2024
pdf
bib
abs
UFSC:基于统一特征空间构建的零样本关系抽取(UFSC: A Unified Feature Space Construction for Zero-Shot Relation Extraction)
Liu Yuchen (刘雨辰)
|
Duan Jianyong (段建勇)
|
Sun Kang (孙康)
|
Zhang Qing (张晴)
|
He Li (何丽)
|
Wang Hao (王昊)
|
Liu Jie (刘杰)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
“零样本关系抽取(ZSRE)旨在从可见关系中学习提取不可见关系的能力。一些研究表明:将样本语句与关系描述匹配进而预测不可见关系的方法,可以有效完成零样本关系抽取任务。然而,现有的匹配框架方法很少统一样本语句与关系描述的特征空间,缺乏对二者特征进行对齐。因此,本文提出一种为匹配框架零样本关系抽取而设计的统一特征空间构建方法。统一样本语句与关系描述的编码模块,并在此基础上引入特征相似损失。同时,为了减轻特征在空间上的聚合现象,引入特征均匀化模块,旨在构建特征更加均匀化的特征空间。本文所提出的方法实现了性能上的提升。与之前最佳的结果相比,在FewRel和Wiki-ZSL数据集上F1值平均提高1.6%和3.4%,体现了统一特征空间构建以及特征均匀化模块的有效性。”
pdf
bib
abs
基于问题扩展的散文答案候选句抽取方法研究(Sentiment classification method based on multitasking and multimodal interactive learning)
Lei Yang (雷洋)
|
Wang Suge (王素格)
|
Li Shuqi (李书琪)
|
Wang Hao (王浩)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
“在散文阅读理解中,一方面问题的题干通常较为简洁、用词较为抽象,机器难以直接理解问题的含义和要求;另一方面,散文文章较长,答案候选句分散在文章的多个段落,给答案候选句的抽取任务带来巨大的挑战。因此,本文提出了一种基于问题扩展的散文答案候选句抽取方法。首先,利用大语言模型抽取文章中与问题题干相关的词,构建问题词扩展库,其次,利用大语言模型强大的生成能力对原问题的题干进行重写,进一步,利用问题词扩展库对其扩展,最后,通过对散文文章分块处理,建立基于全局上下文信息、历史信息的问题和文章句子的相关性判断模型,用于抽取答案候选句。通过在散文阅读理解数据集上进行实验,实验结果表明本文提出的方法提高了散文抽取答案候选句的准确率,为散文阅读理解的生成类问题的解答提供了技术支撑。”
2023
pdf
bib
abs
TabPrompt: Graph-based Pre-training and Prompting for Few-shot Table Understanding
Rihui Jin
|
Jianan Wang
|
Wei Tan
|
Yongrui Chen
|
Guilin Qi
|
Wang Hao
Findings of the Association for Computational Linguistics: EMNLP 2023
Table Understanding (TU) is a crucial aspect of information extraction that enables machines to comprehend the semantics behind tabular data. However, existing methods of TU cannot deal with the scarcity of labeled tabular data. In addition, these methods primarily focus on the textual content within the table, disregarding the inherent topological information of the table. This can lead to a misunderstanding of the tabular semantics. In this paper, we propose TabPrompt, a new framework to tackle the above challenges. Prompt-based learning has gained popularity due to its exceptional performance in few-shot learning. Thus, we introduce prompt-based learning to handle few-shot TU. Furthermore, Graph Contrastive Learning (Graph CL) demonstrates remarkable capabilities in capturing topological information, making Graph Neural Networks an ideal method for encoding tables. Hence, we develop a novel Graph CL method tailored to tabular data. This method serves as the pretext task during the pre-training phase, allowing the generation of vector representations that incorporate the table’s topological information. The experimental results of outperforming all strong baselines demonstrate the strength of our method in few-shot table understanding tasks.
2021
pdf
bib
abs
Enhancing Question Generation with Commonsense Knowledge
Jia Xin
|
Wang Hao
|
Yin Dawei
|
Wu Yunfang
Proceedings of the 20th Chinese National Conference on Computational Linguistics
Question generation (QG) is to generate natural and grammatical questions that can be answeredby a specific answer for a given context. Previous sequence-to-sequence models suffer from aproblem that asking high-quality questions requires commonsense knowledge as backgrounds which in most cases can not be learned directly from training data resulting in unsatisfactory questions deprived of knowledge. In this paper we propose a multi-task learning framework tointroduce commonsense knowledge into question generation process. We first retrieve relevant commonsense knowledge triples from mature databases and select triples with the conversion information from source context to question. Based on these informative knowledge triples wedesign two auxiliary tasks to incorporate commonsense knowledge into the main QG modelwhere one task is Concept Relation Classification and the other is Tail Concept Generation. Ex-perimental results on SQuAD show that our proposed methods are able to noticeably improvethe QG performance on both automatic and human evaluation metrics demonstrating that incor-porating external commonsense knowledge with multi-task learning can help the model generatehuman-like and high-quality questions.