Wang Hao


pdf bib
TabPrompt: Graph-based Pre-training and Prompting for Few-shot Table Understanding
Rihui Jin | Jianan Wang | Wei Tan | Yongrui Chen | Guilin Qi | Wang Hao
Findings of the Association for Computational Linguistics: EMNLP 2023

Table Understanding (TU) is a crucial aspect of information extraction that enables machines to comprehend the semantics behind tabular data. However, existing methods of TU cannot deal with the scarcity of labeled tabular data. In addition, these methods primarily focus on the textual content within the table, disregarding the inherent topological information of the table. This can lead to a misunderstanding of the tabular semantics. In this paper, we propose TabPrompt, a new framework to tackle the above challenges. Prompt-based learning has gained popularity due to its exceptional performance in few-shot learning. Thus, we introduce prompt-based learning to handle few-shot TU. Furthermore, Graph Contrastive Learning (Graph CL) demonstrates remarkable capabilities in capturing topological information, making Graph Neural Networks an ideal method for encoding tables. Hence, we develop a novel Graph CL method tailored to tabular data. This method serves as the pretext task during the pre-training phase, allowing the generation of vector representations that incorporate the table’s topological information. The experimental results of outperforming all strong baselines demonstrate the strength of our method in few-shot table understanding tasks.


pdf bib
Enhancing Question Generation with Commonsense Knowledge
Jia Xin | Wang Hao | Yin Dawei | Wu Yunfang
Proceedings of the 20th Chinese National Conference on Computational Linguistics

Question generation (QG) is to generate natural and grammatical questions that can be answeredby a specific answer for a given context. Previous sequence-to-sequence models suffer from aproblem that asking high-quality questions requires commonsense knowledge as backgrounds which in most cases can not be learned directly from training data resulting in unsatisfactory questions deprived of knowledge. In this paper we propose a multi-task learning framework tointroduce commonsense knowledge into question generation process. We first retrieve relevant commonsense knowledge triples from mature databases and select triples with the conversion information from source context to question. Based on these informative knowledge triples wedesign two auxiliary tasks to incorporate commonsense knowledge into the main QG modelwhere one task is Concept Relation Classification and the other is Tail Concept Generation. Ex-perimental results on SQuAD show that our proposed methods are able to noticeably improvethe QG performance on both automatic and human evaluation metrics demonstrating that incor-porating external commonsense knowledge with multi-task learning can help the model generatehuman-like and high-quality questions.