Wangmeng Zuo
2024
SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models
Lijun Li
|
Bowen Dong
|
Ruohui Wang
|
Xuhao Hu
|
Wangmeng Zuo
|
Dahua Lin
|
Yu Qiao
|
Jing Shao
Findings of the Association for Computational Linguistics: ACL 2024
In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose SALAD-Bench, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under https://github.com/OpenSafetyLab/SALAD-BENCH
2023
Black-Box Tuning of Vision-Language Models with Effective Gradient Approximation
Zixian Guo
|
Yuxiang Wei
|
Ming Liu
|
Zhilong Ji
|
Jinfeng Bai
|
Yiwen Guo
|
Wangmeng Zuo
Findings of the Association for Computational Linguistics: EMNLP 2023
Parameter-efficient fine-tuning (PEFT) methods have provided an effective way for adapting large vision-language models to specific tasks or scenarios. Typically, they learn a very small scale of parameters for pre-trained models in a white-box formulation, which assumes model architectures to be known and parameters to be accessible. However, large models are often not open-source due to considerations of preventing abuse or commercial factors, hence posing a barrier to the deployment of white-box PEFT methods. To alleviate the dependence on model accessibility, we introduce collaborative black-box tuning (CBBT) for both textual prompt optimization and output feature adaptation for black-box models. Specifically, considering that the backpropagation gradients are blocked, we approximate the gradients of textual prompts by analyzing the predictions with perturbed prompts. Secondly, a lightweight adapter is deployed over the output feature of the inaccessible model, further facilitating the model adaptation process. Empowered with these designs, our CBBT is extensively evaluated on eleven downstream benchmarks and achieves remarkable improvements compared to existing black-box VL adaptation methods. Our code will be made publicly available.
Search
Fix data
Co-authors
- Jinfeng Bai 1
- Bowen Dong 1
- Zixian Guo 1
- Yiwen Guo 1
- Xuhao Hu 1
- show all...