Wantian Zhao
2024
POLYIE: A Dataset of Information Extraction from Polymer Material Scientific Literature
Jerry Cheung
|
Yuchen Zhuang
|
Yinghao Li
|
Pranav Shetty
|
Wantian Zhao
|
Sanjeev Grampurohit
|
Rampi Ramprasad
|
Chao Zhang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Scientific information extraction (SciIE), which aims to automatically extract information from scientific literature, is becoming more important than ever. However, there are no existing SciIE datasets for polymer materials, which is an important class of materials used ubiquitously in our daily lives. To bridge this gap, we introduce POLYIE, a new SciIE dataset for polymer materials. POLYIE is curated from 146 full-length polymer scholarly articles, which are annotated with different named entities (i.e., materials, properties, values, conditions) as well as their N-ary relations by domain experts. POLYIE presents several unique challenges due to diverse lexical formats of entities, ambiguity between entities, and variable-length relations. We evaluate state-of-the-art named entity extraction and relation extraction models on POLYIE, analyze their strengths and weaknesses, and highlight some difficult cases for these models. To the best of our knowledge, POLYIE is the first SciIE benchmark for polymer materials, and we hope it will lead to more research efforts from the community on this challenging task. Our code and data are available on: https://github.com/jerry3027/PolyIE.
Search
Co-authors
- Jerry Cheung 1
- Yuchen Zhuang 1
- Yinghao Li 1
- Pranav Shetty 1
- Sanjeev Grampurohit 1
- show all...