Wanyao Shi
2024
HIT-MI&T Lab at SemEval-2024 Task 6: DeBERTa-based Entailment Model is a Reliable Hallucination Detector
Wei Liu
|
Wanyao Shi
|
Zijian Zhang
|
Hui Huang
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
This paper describes our submission for SemEval-2024 Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. We propose four groups of methods for hallucination detection: 1) Entailment Recognition; 2) Similarity Search; 3) Factuality Verification; 4) Confidence Estimation. The four methods rely on either the semantic relationship between the hypothesis and its source (target) or on the model-aware features during decoding. We participated in both the model-agnostic and model-aware tracks. Our method’s effectiveness is validated by our high rankings 3rd in the model-agnostic track and 5th in the model-aware track. We have released our code on GitHub.