Wayne Xin Zhao

Also published as: Xin Zhao


2022

pdf bib
Great~Truths~are ~Always ~Simple: A Rather Simple Knowledge Encoder for Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models
Jinhao Jiang | Kun Zhou | Ji-Rong Wen | Xin Zhao
Findings of the Association for Computational Linguistics: NAACL 2022

Commonsense reasoning in natural language is a desired ability of artificial intelligent systems. For solving complex commonsense reasoning tasks, a typical solution is to enhance pre-trained language models (PTMs) with a knowledge-aware graph neural network (GNN) encoder that models a commonsense knowledge graph (CSKG).Despite the effectiveness, these approaches are built on heavy architectures, and can’t clearly explain how external knowledge resources improve the reasoning capacity of PTMs. Considering this issue, we conduct a deep empirical analysis, and find that it is indeed relation features from CSKGs (but not node features) that mainly contribute to the performance improvement of PTMs. Based on this finding, we design a simple MLP-based knowledge encoder that utilizes statistical relation paths as features. Extensive experiments conducted on five benchmarks demonstrate the effectiveness of our approach, which also largely reduces the parameters for encoding CSKGs.Our codes and data are publicly available at https://github.com/RUCAIBox/SAFE.

pdf bib
Read Extensively, Focus Smartly: A Cross-document Semantic Enhancement Method for Visual Documents NER
Jun Zhao | Xin Zhao | WenYu Zhan | Tao Gui | Qi Zhang | Liang Qiao | Zhanzhan Cheng | Shiliang Pu
Proceedings of the 29th International Conference on Computational Linguistics

The introduction of multimodal information and pretraining technique significantly improves entity recognition from visually-rich documents. However, most of the existing methods pay unnecessary attention to irrelevant regions of the current document while ignoring the potentially valuable information in related documents. To deal with this problem, this work proposes a cross-document semantic enhancement method, which consists of two modules: 1) To prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism, which is used to adaptively filter redundant information in the current document. 2) To further enrich the entity-related context, we propose a cross-document information awareness technique, which enables the model to collect more evidence across documents to assist in prediction. The experimental results on two documents understanding benchmarks covering eight languages demonstrate that our method outperforms the SOTA methods.

pdf bib
Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained Language Models
Ze-Feng Gao | Peiyu Liu | Wayne Xin Zhao | Zhong-Yi Lu | Ji-Rong Wen
Proceedings of the 29th International Conference on Computational Linguistics

Recently, Mixture-of-Experts (short as MoE) architecture has achieved remarkable success in increasing the model capacity of large-scale language models. However, MoE requires incorporating significantly more parameters than the base model being extended. In this paper, we propose building a parameter-efficient MoE architecture by sharing information across experts. We adopt matrix product operator (MPO, a tensor decomposition from quantum many-body physics) to reconstruct the parameter matrix in the expert layer and increase model capacity for pre-trained language models by sharing parameters of the central tensor (containing the core information) among different experts while enabling the specificity through the auxiliary tensors (complementing the central tensor) of different experts. To address the unbalanced optimization issue, we further design the gradient mask strategy for the MPO-based MoE architecture. Extensive experiments based on T5 and GPT-2 show improved performance and efficiency of the pre-trained language model (27.2x reduction in total parameters for the superior model performance, compared with the Switch Transformers). Our code is publicly available at https://github.com/RUCAIBox/MPO/MPOE.

pdf bib
Context-Tuning: Learning Contextualized Prompts for Natural Language Generation
Tianyi Tang | Junyi Li | Wayne Xin Zhao | Ji-Rong Wen
Proceedings of the 29th International Conference on Computational Linguistics

Recently, pretrained language models (PLMs) have had exceptional success in language generation. To leverage the rich knowledge encoded by PLMs, a simple yet powerful paradigm is to use prompts in the form of either discrete tokens or continuous embeddings. In existing studies, these prompting methods are typically independent of the inputs, lacking sufficient consideration of input semantics. To address this issue, we propose a novel continuous prompting approach, called context-tuning, to fine-tuning PLMs for natural language generation. Firstly, the prompts are derived based on the input text to elicit useful knowledge from PLMs for generation. We refer to such prompts as contextualized prompts. Secondly, we use continuous inverse prompting to improve the process of natural language generation by modeling an inverse generation process from output to input, making the generated text more relevant to the inputs. Furthermore, we utilize a lightweight context-tuning method that fine-tunes only 0.12% of the parameters while maintaining good performance. Our code is publicly available at https://github.com/RUCAIBox/Context-Tuning.

pdf bib
Learning to Transfer Prompts for Text Generation
Junyi Li | Tianyi Tang | Jian-Yun Nie | Ji-Rong Wen | Xin Zhao
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.

pdf bib
ElitePLM: An Empirical Study on General Language Ability Evaluation of Pretrained Language Models
Junyi Li | Tianyi Tang | Zheng Gong | Lixin Yang | Zhuohao Yu | Zhipeng Chen | Jingyuan Wang | Xin Zhao | Ji-Rong Wen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Nowadays, pretrained language models (PLMs) have dominated the majority of NLP tasks. While, little research has been conducted on systematically evaluating the language abilities of PLMs. In this paper, we present a large-scale empirical study on general language ability evaluation of PLMs (ElitePLM). In our study, we design four evaluation dimensions, memory, comprehension, reasoning, and composition, to measure ten widely-used PLMs within five categories. Our empirical results demonstrate that: (1) PLMs with varying training objectives and strategies are good at different ability tests; (2) fine-tuning PLMs in downstream tasks is usually sensitive to the data size and distribution; (3) PLMs have excellent transferability between similar tasks. Moreover, the prediction results of PLMs in our experiments are released as an open resource for more deep and detailed analysis on the language abilities of PLMs. This paper can guide the future work to select, apply, and design PLMs for specific tasks. We have made all the details of experiments publicly available at https://github.com/RUCAIBox/ElitePLM.

pdf bib
Continual Pre-training of Language Models for Math Problem Understanding with Syntax-Aware Memory Network
Zheng Gong | Kun Zhou | Xin Zhao | Jing Sha | Shijin Wang | Ji-Rong Wen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we study how to continually pre-train language models for improving the understanding of math problems. Specifically, we focus on solving a fundamental challenge in modeling math problems, how to fuse the semantics of textual description and formulas, which are highly different in essence. To address this issue, we propose a new approach called COMUS to continually pre-train language models for math problem understanding with syntax-aware memory network. In this approach, we first construct the math syntax graph to model the structural semantic information, by combining the parsing trees of the text and formulas, and then design the syntax-aware memory networks to deeply fuse the features from the graph and text. With the help of syntax relations, we can model the interaction between the token from the text and its semantic-related nodes within the formulas, which is helpful to capture fine-grained semantic correlations between texts and formulas. Besides, we devise three continual pre-training tasks to further align and fuse the representations of the text and math syntax graph. Experimental results on four tasks in the math domain demonstrate the effectiveness of our approach. Our code and data are publicly available at the link: bluehttps://github.com/RUCAIBox/COMUS.

pdf bib
Debiased Contrastive Learning of Unsupervised Sentence Representations
Kun Zhou | Beichen Zhang | Xin Zhao | Ji-Rong Wen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, contrastive learning has been shown to be effective in improving pre-trained language models (PLM) to derive high-quality sentence representations. It aims to pull close positive examples to enhance the alignment while push apart irrelevant negatives for the uniformity of the whole representation space.However, previous works mostly adopt in-batch negatives or sample from training data at random. Such a way may cause the sampling bias that improper negatives (false negatives and anisotropy representations) are used to learn sentence representations, which will hurt the uniformity of the representation space.To address it, we present a new framework DCLR (Debiased Contrastive Learning of unsupervised sentence Representations) to alleviate the influence of these improper negatives.In DCLR, we design an instance weighting method to punish false negatives and generate noise-based negatives to guarantee the uniformity of the representation space.Experiments on seven semantic textual similarity tasks show that our approach is more effective than competitive baselines. Our code and data are publicly available at the link: bluehttps://github.com/RUCAIBox/DCLR.

2021

pdf bib
RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
Ruiyang Ren | Yingqi Qu | Jing Liu | Wayne Xin Zhao | QiaoQiao She | Hua Wu | Haifeng Wang | Ji-Rong Wen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage reranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other’s relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.

pdf bib
Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models
Kun Zhou | Wayne Xin Zhao | Sirui Wang | Fuzheng Zhang | Wei Wu | Ji-Rong Wen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent works have shown that powerful pre-trained language models (PLM) can be fooled by small perturbations or intentional attacks. To solve this issue, various data augmentation techniques are proposed to improve the robustness of PLMs. However, it is still challenging to augment semantically relevant examples with sufficient diversity. In this work, we present Virtual Data Augmentation (VDA), a general framework for robustly fine-tuning PLMs. Based on the original token embeddings, we construct a multinomial mixture for augmenting virtual data embeddings, where a masked language model guarantees the semantic relevance and the Gaussian noise provides the augmentation diversity. Furthermore, a regularized training strategy is proposed to balance the two aspects. Extensive experiments on six datasets show that our approach is able to improve the robustness of PLMs and alleviate the performance degradation under adversarial attacks. Our codes and data are publicly available at bluehttps://github.com/RUCAIBox/VDA.

pdf bib
Few-shot Knowledge Graph-to-Text Generation with Pretrained Language Models
Junyi Li | Tianyi Tang | Wayne Xin Zhao | Zhicheng Wei | Nicholas Jing Yuan | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval
Ruiyang Ren | Shangwen Lv | Yingqi Qu | Jing Liu | Wayne Xin Zhao | QiaoQiao She | Hua Wu | Haifeng Wang | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
A Pretraining Numerical Reasoning Model for Ordinal Constrained Question Answering on Knowledge Base
Yu Feng | Jing Zhang | Gaole He | Wayne Xin Zhao | Lemao Liu | Quan Liu | Cuiping Li | Hong Chen
Findings of the Association for Computational Linguistics: EMNLP 2021

Knowledge Base Question Answering (KBQA) is to answer natural language questions posed over knowledge bases (KBs). This paper targets at empowering the IR-based KBQA models with the ability of numerical reasoning for answering ordinal constrained questions. A major challenge is the lack of explicit annotations about numerical properties. To address this challenge, we propose a pretraining numerical reasoning model consisting of NumGNN and NumTransformer, guided by explicit self-supervision signals. The two modules are pretrained to encode the magnitude and ordinal properties of numbers respectively and can serve as model-agnostic plugins for any IR-based KBQA model to enhance its numerical reasoning ability. Extensive experiments on two KBQA benchmarks verify the effectiveness of our method to enhance the numerical reasoning ability for IR-based KBQA models.

pdf bib
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators
Peiyu Liu | Ze-Feng Gao | Wayne Xin Zhao | Zhi-Yuan Xie | Zhong-Yi Lu | Ji-Rong Wen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper presents a novel pre-trained language models (PLM) compression approach based on the matrix product operator (short as MPO) from quantum many-body physics. It can decompose an original matrix into central tensors (containing the core information) and auxiliary tensors (with only a small proportion of parameters). With the decomposed MPO structure, we propose a novel fine-tuning strategy by only updating the parameters from the auxiliary tensors, and design an optimization algorithm for MPO-based approximation over stacked network architectures. Our approach can be applied to the original or the compressed PLMs in a general way, which derives a lighter network and significantly reduces the parameters to be fine-tuned. Extensive experiments have demonstrated the effectiveness of the proposed approach in model compression, especially the reduction in fine-tuning parameters (91% reduction on average). The code to reproduce the results of this paper can be found at https://github.com/RUCAIBox/MPOP.

pdf bib
TextBox: A Unified, Modularized, and Extensible Framework for Text Generation
Junyi Li | Tianyi Tang | Gaole He | Jinhao Jiang | Xiaoxuan Hu | Puzhao Xie | Zhipeng Chen | Zhuohao Yu | Wayne Xin Zhao | Ji-Rong Wen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

In this paper, we release an open-source library, called TextBox, to provide a unified, modularized, and extensible text generation framework. TextBox aims to support a broad set of text generation tasks and models. In our library, we implement 21 text generation models on 9 benchmark datasets, covering the categories of VAE, GAN, and pretrained language models. Meanwhile, our library maintains sufficient modularity and extensibility by properly decomposing the model architecture, inference, and learning process into highly reusable modules, which allows users to easily incorporate new models into our framework. The above features make TextBox especially suitable for researchers and practitioners to quickly reproduce baseline models and develop new models. TextBox is implemented based on PyTorch, and released under Apache License 2.0 at the link https://github.com/RUCAIBox/TextBox.

pdf bib
CRSLab: An Open-Source Toolkit for Building Conversational Recommender System
Kun Zhou | Xiaolei Wang | Yuanhang Zhou | Chenzhan Shang | Yuan Cheng | Wayne Xin Zhao | Yaliang Li | Ji-Rong Wen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

In recent years, conversational recommender systems (CRSs) have drawn a wide attention in the research community, which focus on providing high-quality recommendations to users via natural language conversations. However, due to diverse scenarios and data formats, existing studies on CRSs lack unified and standardized implementation or comparison. To tackle this challenge, we release an open-source toolkit CRSLab, which provides a unified and extensible framework with highly-decoupled modules to develop CRSs. Based on this framework, we collect 6 commonly used human-annotated CRS datasets and implement 19 models that include advanced techniques such as graph neural networks and pre-training models. Besides, our toolkit provides a series of automatic evaluation protocols and a human-machine interaction interface to evaluate and compare different CRS methods. The project and documents are released at https://github.com/RUCAIBox/CRSLab.

pdf bib
RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering
Yingqi Qu | Yuchen Ding | Jing Liu | Kai Liu | Ruiyang Ren | Wayne Xin Zhao | Daxiang Dong | Hua Wu | Haifeng Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.

2020

pdf bib
Towards Topic-Guided Conversational Recommender System
Kun Zhou | Yuanhang Zhou | Wayne Xin Zhao | Xiaoke Wang | Ji-Rong Wen
Proceedings of the 28th International Conference on Computational Linguistics

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. To develop an effective CRS, the support of high-quality datasets is essential. Existing CRS datasets mainly focus on immediate requests from users, while lack proactive guidance to the recommendation scenario. In this paper, we contribute a new CRS dataset named TG-ReDial (Recommendation through Topic-Guided Dialog). Our dataset has two major features. First, it incorporates topic threads to enforce natural semantic transitions towards the recommendation scenario. Second, it is created in a semi-automatic way, hence human annotation is more reasonable and controllable. Based on TG-ReDial, we present the task of topic-guided conversational recommendation, and propose an effective approach to this task. Extensive experiments have demonstrated the effectiveness of our approach on three sub-tasks, namely topic prediction, item recommendation and response generation. TG-ReDial is available at bluehttps://github.com/RUCAIBox/TG-ReDial.

2019

pdf bib
Domain Adaptation for Person-Job Fit with Transferable Deep Global Match Network
Shuqing Bian | Wayne Xin Zhao | Yang Song | Tao Zhang | Ji-Rong Wen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Person-job fit has been an important task which aims to automatically match job positions with suitable candidates. Previous methods mainly focus on solving the match task in single-domain setting, which may not work well when labeled data is limited. We study the domain adaptation problem for person-job fit. We first propose a deep global match network for capturing the global semantic interactions between two sentences from a job posting and a candidate resume respectively. Furthermore, we extend the match network and implement domain adaptation in three levels, sentence-level representation, sentence-level match, and global match. Extensive experiment results on a large real-world dataset consisting of six domains have demonstrated the effectiveness of the proposed model, especially when there is not sufficient labeled data.

pdf bib
A Neural Citation Count Prediction Model based on Peer Review Text
Siqing Li | Wayne Xin Zhao | Eddy Jing Yin | Ji-Rong Wen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Citation count prediction (CCP) has been an important research task for automatically estimating the future impact of a scholarly paper. Previous studies mainly focus on extracting or mining useful features from the paper itself or the associated authors. An important kind of data signals, peer review text, has not been utilized for the CCP task. In this paper, we take the initiative to utilize peer review data for the CCP task with a neural prediction model. Our focus is to learn a comprehensive semantic representation for peer review text for improving the prediction performance. To achieve this goal, we incorporate the abstract-review match mechanism and the cross-review match mechanism to learn deep features from peer review text. We also consider integrating hand-crafted features via a wide component. The deep and wide components jointly make the prediction. Extensive experiments have demonstrated the usefulness of the peer review data and the effectiveness of the proposed model. Our dataset has been released online.

pdf bib
UER: An Open-Source Toolkit for Pre-training Models
Zhe Zhao | Hui Chen | Jinbin Zhang | Xin Zhao | Tao Liu | Wei Lu | Xi Chen | Haotang Deng | Qi Ju | Xiaoyong Du
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Existing works, including ELMO and BERT, have revealed the importance of pre-training for NLP tasks. While there does not exist a single pre-training model that works best in all cases, it is of necessity to develop a framework that is able to deploy various pre-training models efficiently. For this purpose, we propose an assemble-on-demand pre-training toolkit, namely Universal Encoder Representations (UER). UER is loosely coupled, and encapsulated with rich modules. By assembling modules on demand, users can either reproduce a state-of-the-art pre-training model or develop a pre-training model that remains unexplored. With UER, we have built a model zoo, which contains pre-trained models based on different corpora, encoders, and targets (objectives). With proper pre-trained models, we could achieve new state-of-the-art results on a range of downstream datasets.

pdf bib
Generating Long and Informative Reviews with Aspect-Aware Coarse-to-Fine Decoding
Junyi Li | Wayne Xin Zhao | Ji-Rong Wen | Yang Song
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Generating long and informative review text is a challenging natural language generation task. Previous work focuses on word-level generation, neglecting the importance of topical and syntactic characteristics from natural languages. In this paper, we propose a novel review generation model by characterizing an elaborately designed aspect-aware coarse-to-fine generation process. First, we model the aspect transitions to capture the overall content flow. Then, to generate a sentence, an aspect-aware sketch will be predicted using an aspect-aware decoder. Finally, another decoder fills in the semantic slots by generating corresponding words. Our approach is able to jointly utilize aspect semantics, syntactic sketch, and context information. Extensive experiments results have demonstrated the effectiveness of the proposed model.

2018

pdf bib
Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network
Xiangyang Zhou | Lu Li | Daxiang Dong | Yi Liu | Ying Chen | Wayne Xin Zhao | Dianhai Yu | Hua Wu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Human generates responses relying on semantic and functional dependencies, including coreference relation, among dialogue elements and their context. In this paper, we investigate matching a response with its multi-turn context using dependency information based entirely on attention. Our solution is inspired by the recently proposed Transformer in machine translation (Vaswani et al., 2017) and we extend the attention mechanism in two ways. First, we construct representations of text segments at different granularities solely with stacked self-attention. Second, we try to extract the truly matched segment pairs with attention across the context and response. We jointly introduce those two kinds of attention in one uniform neural network. Experiments on two large-scale multi-turn response selection tasks show that our proposed model significantly outperforms the state-of-the-art models.

pdf bib
hyperdoc2vec: Distributed Representations of Hypertext Documents
Jialong Han | Yan Song | Wayne Xin Zhao | Shuming Shi | Haisong Zhang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Hypertext documents, such as web pages and academic papers, are of great importance in delivering information in our daily life. Although being effective on plain documents, conventional text embedding methods suffer from information loss if directly adapted to hyper-documents. In this paper, we propose a general embedding approach for hyper-documents, namely, hyperdoc2vec, along with four criteria characterizing necessary information that hyper-document embedding models should preserve. Systematic comparisons are conducted between hyperdoc2vec and several competitors on two tasks, i.e., paper classification and citation recommendation, in the academic paper domain. Analyses and experiments both validate the superiority of hyperdoc2vec to other models w.r.t. the four criteria.

2014

pdf bib
Knowledge Sharing via Social Login: Exploiting Microblogging Service for Warming up Social Question Answering Websites
Yang Xiao | Wayne Xin Zhao | Kun Wang | Zhen Xiao
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Group based Self Training for E-Commerce Product Record Linkage
Xin Zhao | Yuexin Wu | Hongfei Yan | Xiaoming Li
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2013

pdf bib
Mining New Business Opportunities: Identifying Trend related Products by Leveraging Commercial Intents from Microblogs
Jinpeng Wang | Wayne Xin Zhao | Haitian Wei | Hongfei Yan | Xiaoming Li
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2012

pdf bib
A Novel Burst-based Text Representation Model for Scalable Event Detection
Xin Zhao | Rishan Chen | Kai Fan | Hongfei Yan | Xiaoming Li
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Joint Learning for Coreference Resolution with Markov Logic
Yang Song | Jing Jiang | Wayne Xin Zhao | Sujian Li | Houfeng Wang
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

pdf bib
Identifying Event-related Bursts via Social Media Activities
Xin Zhao | Baihan Shu | Jing Jiang | Yang Song | Hongfei Yan | Xiaoming Li
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

2011

pdf bib
Topical Keyphrase Extraction from Twitter
Xin Zhao | Jing Jiang | Jing He | Yang Song | Palakorn Achanauparp | Ee-Peng Lim | Xiaoming Li
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

2010

pdf bib
Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid
Xin Zhao | Jing Jiang | Hongfei Yan | Xiaoming Li
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

2004

pdf bib
A super-function based Japanese-Chinese machine translation system for business users
Xin Zhao | Fuji Ren | Stefan Voß
Proceedings of the 6th Conference of the Association for Machine Translation in the Americas: Technical Papers

In this paper, a Japanese-Chinese Machine Translation (MT) system using the so-called Super-Function (SF) approach is presented. A SF is a functional relation mapping sentences from one language to another. The core of the system uses the SF approach to translate without going through syntactic and semantic analysis as many MT systems usually do. Our work focuses on business users for whom MT often is a great help if they need an immediate idea of the content of texts like e-mail messages, reports, web pages, or business letters. In this paper, we aim at performing MT between Japanese and Chinese to translate business letters by the SF based technique.