Wee Chung Gan


2019

pdf bib
Improved Word Sense Disambiguation Using Pre-Trained Contextualized Word Representations
Christian Hadiwinoto | Hwee Tou Ng | Wee Chung Gan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Contextualized word representations are able to give different representations for the same word in different contexts, and they have been shown to be effective in downstream natural language processing tasks, such as question answering, named entity recognition, and sentiment analysis. However, evaluation on word sense disambiguation (WSD) in prior work shows that using contextualized word representations does not outperform the state-of-the-art approach that makes use of non-contextualized word embeddings. In this paper, we explore different strategies of integrating pre-trained contextualized word representations and our best strategy achieves accuracies exceeding the best prior published accuracies by significant margins on multiple benchmark WSD datasets.

pdf bib
Improving the Robustness of Question Answering Systems to Question Paraphrasing
Wee Chung Gan | Hwee Tou Ng
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Despite the advancement of question answering (QA) systems and rapid improvements on held-out test sets, their generalizability is a topic of concern. We explore the robustness of QA models to question paraphrasing by creating two test sets consisting of paraphrased SQuAD questions. Paraphrased questions from the first test set are very similar to the original questions designed to test QA models’ over-sensitivity, while questions from the second test set are paraphrased using context words near an incorrect answer candidate in an attempt to confuse QA models. We show that both paraphrased test sets lead to significant decrease in performance on multiple state-of-the-art QA models. Using a neural paraphrasing model trained to generate multiple paraphrased questions for a given source question and a set of paraphrase suggestions, we propose a data augmentation approach that requires no human intervention to re-train the models for improved robustness to question paraphrasing.