Wei-Rui Chen

Also published as: Wei-rui Chen


2024

pdf bib
Fumbling in Babel: An Investigation into ChatGPT’s Language Identification Ability
Wei-Rui Chen | Ife Adebara | Khai Doan | Qisheng Liao | Muhammad Abdul-Mageed
Findings of the Association for Computational Linguistics: NAACL 2024

ChatGPT has recently emerged as a powerful NLP tool that can carry out a variety of tasks. However, the range of languages ChatGPT can handle remains largely a mystery. To uncover which languages ChatGPT ‘knows’, we investigate its language identification (LID) abilities. For this purpose, we compile Babel-670, a benchmark comprising 670 languages representing 23 language families spoken in five continents. Languages in Babel-670 run the gamut from the very high-resource to the very low-resource. We then study ChatGPT’s (both GPT-3.5 and GPT-4) ability to (i) identify language names and language codes (ii) under zero- and few-shot conditions (iii) with and without provision of a label set. When compared to smaller finetuned LID tools, we find that ChatGPT lags behind. For example, it has poor performance on African languages. We conclude that current large language models would benefit from further development before they can sufficiently serve diverse communities.

pdf bib
Interplay of Machine Translation, Diacritics, and Diacritization
Wei-Rui Chen | Ife Adebara | Muhammad Abdul-Mageed
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We investigate two research questions: (1) how do machine translation (MT) and diacritization influence the performance of each other in a multi-task learning setting (2) the effect of keeping (vs. removing) diacritics on MT performance. We examine these two questions in both high-resource (HR) and low-resource (LR) settings across 55 different languages (36 African languages and 19 European languages). For (1), results show that diacritization significantly benefits MT in the LR scenario, doubling or even tripling performance for some languages, but harms MT in the HR scenario. We find that MT harms diacritization in LR but benefits significantly in HR for some languages. For (2), MT performance is similar regardless of diacritics being kept or removed. In addition, we propose two classes of metrics to measure the complexity of a diacritical system, finding these metrics to correlate positively with the performance of our diacritization models. Overall, our work provides insights for developing MT and diacritization systems under different data size conditions and may have implications that generalize beyond the 55 languages we investigate.

2023

pdf bib
Improving Neural Machine Translation of Indigenous Languages with Multilingual Transfer Learning
Wei-rui Chen | Muhammad Abdul-mageed
Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023)

Machine translation (MT) involving Indigenous languages, including endangered ones, is challenging primarily due to lack of sufficient parallel data. We describe an approach exploiting bilingual and multilingual pretrained MT models in a transfer learning setting to translate from Spanish into ten South American Indigenous languages. Our models set new SOTA on five out of the ten language pairs we consider, even doubling performance on one of these five pairs. Unlike previous SOTA that perform data augmentation to enlarge the train sets, we retain the low-resource setting to test the effectiveness of our models under such a constraint. In spite of the rarity of linguistic information available about the Indigenous languages, we offer a number of quantitative and qualitative analyses (e.g., as to morphology, tokenization, and orthography) to contextualize our results.

2021

pdf bib
IndT5: A Text-to-Text Transformer for 10 Indigenous Languages
El Moatez Billah Nagoudi | Wei-Rui Chen | Muhammad Abdul-Mageed | Hasan Cavusoglu
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

Transformer language models have become fundamental components of NLP based pipelines. Although several Transformer have been introduced to serve many languages, there is a shortage of models pre-trained for low-resource and Indigenous languages in particular. In this work, we introduce IndT5, the first Transformer language model for Indigenous languages. To train IndT5, we build IndCorpus, a new corpus for 10 Indigenous languages and Spanish. We also present the application of IndT5 to machine translation by investigating different approaches to translate between Spanish and the Indigenous languages as part of our contribution to the AmericasNLP 2021 Shared Task on Open Machine Translation. IndT5 and IndCorpus are publicly available for research.

pdf bib
Machine Translation of Low-Resource Indo-European Languages
Wei-Rui Chen | Muhammad Abdul-Mageed
Proceedings of the Sixth Conference on Machine Translation

In this work, we investigate methods for the challenging task of translating between low- resource language pairs that exhibit some level of similarity. In particular, we consider the utility of transfer learning for translating between several Indo-European low-resource languages from the Germanic and Romance language families. In particular, we build two main classes of transfer-based systems to study how relatedness can benefit the translation performance. The primary system fine-tunes a model pre-trained on a related language pair and the contrastive system fine-tunes one pre-trained on an unrelated language pair. Our experiments show that although relatedness is not necessary for transfer learning to work, it does benefit model performance.