Wei Wang Xjtlu


2024

pdf bib
Revealing COVID-19’s Social Dynamics: Diachronic Semantic Analysis of Vaccine and Symptom Discourse on Twitter
Zeqiang Wang | Jiageng Wu | Yuqi Wang | Wei Wang Xjtlu | Jie Yang | Nishanth R. Sastry | Jon Johnson | Suparna De
Findings of the Association for Computational Linguistics: EMNLP 2024

Social media is recognized as an important source for deriving insights into public opinion dynamics and social impacts due to the vast textual data generated daily and the ‘unconstrained’ behavior of people interacting on these platforms. However, such analyses prove challenging due to the semantic shift phenomenon, where word meanings evolve over time. This paper proposes an unsupervised dynamic word embedding method to capture longitudinal semantic shifts in social media data without predefined anchor words. The method leverages word co-occurrence statistics and dynamic updating to adapt embeddings over time, addressing the challenges of data sparseness, imbalanced distributions, and synergistic semantic effects. Evaluated on a large COVID-19 Twitter dataset, the method reveals semantic evolution patterns of vaccine- and symptom-related entities across different pandemic stages, and their potential correlations with real-world statistics. Our key contributions include the dynamic embedding technique, empirical analysis of COVID-19 semantic shifts, and discussions on enhancing semantic shift modeling for computational social science research. This study enables capturing longitudinal semantic dynamics on social media to understand public discourse and collective phenomena.

pdf bib
Document-level Causal Relation Extraction with Knowledge-guided Binary Question Answering
Zimu Wang | Lei Xia | Wei Wang Xjtlu | Xinya Du
Findings of the Association for Computational Linguistics: EMNLP 2024

As an essential task in information extraction (IE), Event-Event Causal Relation Extraction (ECRE) aims to identify and classify the causal relationships between event mentions in natural language texts. However, existing research on ECRE has highlighted two critical challenges, including the lack of document-level modeling and causal hallucinations. In this paper, we propose a Knowledge-guided binary Question Answering (KnowQA) method with event structures for ECRE, consisting of two stages: Event Structure Construction and Binary Question Answering. We conduct extensive experiments under both zero-shot and fine-tuning settings with large language models (LLMs) on the MECI and MAVEN-ERE datasets. Experimental results demonstrate the usefulness of event structures on document-level ECRE and the effectiveness of KnowQA by achieving state-of-the-art on the MECI dataset. We observe not only the effectiveness but also the high generalizability and low inconsistency of our method, particularly when with complete event structures after fine-tuning the models.