Wei Zhong


2022

pdf bib
Evaluating Token-Level and Passage-Level Dense Retrieval Models for Math Information Retrieval
Wei Zhong | Jheng-Hong Yang | Yuqing Xie | Jimmy Lin
Findings of the Association for Computational Linguistics: EMNLP 2022

With the recent success of dense retrieval methods based on bi-encoders, studies have applied this approach to various interesting downstream retrieval tasks with good efficiency and in-domain effectiveness.Recently, we have also seen the presence of dense retrieval models in Math Information Retrieval (MIR) tasks,but the most effective systems remain classic retrieval methods that consider hand-crafted structure features.In this work, we try to combine the best of both worlds: a well-defined structure search method for effective formula search and efficient bi-encoder dense retrieval models to capture contextual similarities.Specifically, we have evaluated two representative bi-encoder models for token-level and passage-level dense retrieval on recent MIR tasks.Our results show that bi-encoder models are highly complementary to existing structure search methods, and we are able to advance the state-of-the-art on MIR datasets.