Weidong Xiao


pdf bib
Extract-Select: A Span Selection Framework for Nested Named Entity Recognition with Generative Adversarial Training
Peixin Huang | Xiang Zhao | Minghao Hu | Yang Fang | Xinyi Li | Weidong Xiao
Findings of the Association for Computational Linguistics: ACL 2022

Nested named entity recognition (NER) is a task in which named entities may overlap with each other. Span-based approaches regard nested NER as a two-stage span enumeration and classification task, thus having the innate ability to handle this task. However, they face the problems of error propagation, ignorance of span boundary, difficulty in long entity recognition and requirement on large-scale annotated data. In this paper, we propose Extract-Select, a span selection framework for nested NER, to tackle these problems. Firstly, we introduce a span selection framework in which nested entities with different input categories would be separately extracted by the extractor, thus naturally avoiding error propagation in two-stage span-based approaches. In the inference phase, the trained extractor selects final results specific to the given entity category. Secondly, we propose a hybrid selection strategy in the extractor, which not only makes full use of span boundary but also improves the ability of long entity recognition. Thirdly, we design a discriminator to evaluate the extraction result, and train both extractor and discriminator with generative adversarial training (GAT). The use of GAT greatly alleviates the stress on the dataset size. Experimental results on four benchmark datasets demonstrate that Extract-Select outperforms competitive nested NER models, obtaining state-of-the-art results. The proposed model also performs well when less labeled data are given, proving the effectiveness of GAT.


pdf bib
Relation-aware Bidirectional Path Reasoning for Commonsense Question Answering
Junxing Wang | Xinyi Li | Zhen Tan | Xiang Zhao | Weidong Xiao
Proceedings of the 25th Conference on Computational Natural Language Learning

Commonsense Question Answering is an important natural language processing (NLP) task that aims to predict the correct answer to a question through commonsense reasoning. Previous studies utilize pre-trained models on large-scale corpora such as BERT, or perform reasoning on knowledge graphs. However, these methods do not explicitly model the relations that connect entities, which are informational and can be used to enhance reasoning. To address this issue, we propose a relation-aware reasoning method. Our method uses a relation-aware graph neural network to capture the rich contextual information from both entities and relations. Compared with methods that use fixed relation embeddings from pre-trained models, our model dynamically updates relations with contextual information from a multi-source subgraph, built from multiple external knowledge sources. The enhanced representations of relations are then fed to a bidirectional reasoning module. A bidirectional attention mechanism is applied between the question sequence and the paths that connect entities, which provides us with transparent interpretability. Experimental results on the CommonsenseQA dataset illustrate that our method results in significant improvements over the baselines while also providing clear reasoning paths.


pdf bib
Joint Event Extraction with Hierarchical Policy Network
Peixin Huang | Xiang Zhao | Ryuichi Takanobu | Zhen Tan | Weidong Xiao
Proceedings of the 28th International Conference on Computational Linguistics

Most existing work on event extraction (EE) either follows a pipelined manner or uses a joint structure but is pipelined in essence. As a result, these efforts fail to utilize information interactions among event triggers, event arguments, and argument roles, which causes information redundancy. In view of this, we propose to exploit the role information of the arguments in an event and devise a Hierarchical Policy Network (HPNet) to perform joint EE. The whole EE process is fulfilled through a two-level hierarchical structure consisting of two policy networks for event detection and argument detection. The deep information interactions among the subtasks are realized, and it is more natural to deal with multiple events issue. Extensive experiments on ACE2005 and TAC2015 demonstrate the superiority of HPNet, leading to state-of-the-art performance and is more powerful for sentences with multiple events.