As humans, we consistently interact with our peers and receive feedback in the form of natural language. This language feedback allows us to maintain appropriate behavior, and rectify potential errors. The question arises naturally: can we use language feedback to align large language models (LLMs)? In contrast to previous research that aligns LLMs with scalar rewards, we present the first systematic exploration of alignment through the lens of language feedback (i.e., judgment). We start with an in-depth investigation of potential methods that can be adapted for aligning LLMs with judgments, revealing that these methods cannot fully capitalize on judgments. To facilitate more effective utilization of judgments, we propose a novel framework, Contrastive Unlikelihood Training (CUT), that allows for fine-grained inappropriate content detection and correction based on judgments. Our results show that, with merely 1317 off-the-shelf judgment data, CUT can beat the 175B DaVinci003 and surpass the best baseline by 50.84 points on AlpacaEval using LLaMA2-13b. CUT can also align LLMs in an iterative fashion using up-to-date model-specific judgments, improving performance from 81.09 to 91.68 points on AlpacaEval using LLaMA2-chat-13b. Further analysis suggests that judgments hold greater potential in LLM alignment than rewards.
Span identification aims at identifying specific text spans from text input and classifying them into pre-defined categories. Different from previous works that merely leverage the Subordinate (SUB) relation (i.e. if a span is an instance of a certain category) to train models, this paper for the first time explores the Peer (PR) relation, which indicates that two spans are instances of the same category and share similar features. Specifically, a novel Peer Data Augmentation (PeerDA) approach is proposed which employs span pairs with the PR relation as the augmentation data for training. PeerDA has two unique advantages: (1) There are a large number of PR span pairs for augmenting the training data. (2) The augmented data can prevent the trained model from over-fitting the superficial span-category mapping by pushing the model to leverage the span semantics. Experimental results on ten datasets over four diverse tasks across seven domains demonstrate the effectiveness of PeerDA. Notably, PeerDA achieves state-of-the-art results on six of them.
We present multilingual Pre-trained Machine Reader (mPMR), a novel method for multilingual machine reading comprehension (MRC)-style pre-training. mPMR aims to guide multilingual pre-trained language models (mPLMs) to perform natural language understanding (NLU) including both sequence classification and span extraction in multiple languages. To achieve cross-lingual generalization when only source-language fine-tuning data is available, existing mPLMs solely transfer NLU capability from a source language to target languages. In contrast, mPMR allows the direct inheritance of multilingual NLU capability from the MRC-style pre-training to downstream tasks. Therefore, mPMR acquires better NLU capability for target languages. mPMR also provides a unified solver for tackling cross-lingual span extraction and sequence classification, thereby enabling the extraction of rationales to explain the sentence-pair classification process.
We study automatic Contract Clause Extraction (CCE) by modeling implicit relations in legal contracts. Existing CCE methods mostly treat contracts as plain text, creating a substantial barrier to understanding contracts of high complexity. In this work, we first comprehensively analyze the complexity issues of contracts and distill out three implicit relations commonly found in contracts, namely, 1) Long-range Context Relation that captures the correlations of distant clauses; 2) Term-Definition Relation that captures the relation between important terms with their corresponding definitions, and 3) Similar Clause Relation that captures the similarities between clauses of the same type. Then we propose a novel framework ConReader to exploit the above three relations for better contract understanding and improving CCE. Experimental results show that ConReader makes the prediction more interpretable and achieves new state-of-the-art on two CCE tasks in both conventional and zero-shot settings.
Neural Machine Translation (NMT) has achieved significant breakthrough in performance but is known to suffer vulnerability to input perturbations. As real input noise is difficult to predict during training, robustness is a big issue for system deployment. In this paper, we improve the robustness of NMT models by reducing the effect of noisy words through a Context-Enhanced Reconstruction (CER) approach. CER trains the model to resist noise in two steps: (1) perturbation step that breaks the naturalness of input sequence with made-up words; (2) reconstruction step that defends the noise propagation by generating better and more robust contextual representation. Experimental results on Chinese-English (ZH-EN) and French-English (FR-EN) translation tasks demonstrate robustness improvement on both news and social media text. Further fine-tuning experiments on social media text show our approach can converge at a higher position and provide a better adaptation.
We propose a novel Chain Guided Retriever-reader (CGR) framework to model the reasoning chain for multi-hop Science Question Answering. Our framework is capable of performing explainable reasoning without the need of any corpus-specific annotations, such as the ground-truth reasoning chain, or human-annotated entity mentions. Specifically, we first generate reasoning chains from a semantic graph constructed by Abstract Meaning Representation of retrieved evidence facts. A Chain-aware loss, concerning both local and global chain information, is also designed to enable the generated chains to serve as distant supervision signals for training the retriever, where reinforcement learning is also adopted to maximize the utility of the reasoning chains. Our framework allows the retriever to capture step-by-step clues of the entire reasoning process, which is not only shown to be effective on two challenging multi-hop Science QA tasks, namely OpenBookQA and ARC-Challenge, but also favors explainability.
While achieving great fluency, current machine translation (MT) techniques are bottle-necked by adequacy issues. To have a closer study of these issues and accelerate model development, we propose automatic detecting adequacy errors in MT hypothesis for MT model evaluation. To do that, we annotate missing and wrong translations, the two most prevalent issues for current neural machine translation model, in 15000 Chinese-English translation pairs. We build a supervised alignment model for translation error detection (AlignDet) based on a simple Alignment Triangle strategy to set the benchmark for automatic error detection task. We also discuss the difficulties of this task and the benefits of this task for existing evaluation metrics.