Weixi Feng
2023
EDIS: Entity-Driven Image Search over Multimodal Web Content
Siqi Liu
|
Weixi Feng
|
Tsu-Jui Fu
|
Wenhu Chen
|
William Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Making image retrieval methods practical for real-world search applications requires significant progress in dataset scales, entity comprehension, and multimodal information fusion. In this work, we introduce Entity-Driven Image Search (EDIS), a challenging dataset for cross-modal image search in the news domain. EDIS consists of 1 million web images from actual search engine results and curated datasets, with each image paired with a textual description. Unlike datasets that assume a small set of single-modality candidates, EDIS reflects real-world web image search scenarios by including a million multimodal image-text pairs as candidates. EDIS encourages the development of retrieval models that simultaneously address cross-modal information fusion and matching. To achieve accurate ranking results, a model must: 1) understand named entities and events from text queries, 2) ground entities onto images or text descriptions, and 3) effectively fuse textual and visual representations. Our experimental results show that EDIS challenges state-of-the-art methods with dense entities and the large-scale candidate set. The ablation study also proves that fusing textual features with visual features is critical in improving retrieval results.
2022
CPL: Counterfactual Prompt Learning for Vision and Language Models
Xuehai He
|
Diji Yang
|
Weixi Feng
|
Tsu-Jui Fu
|
Arjun Akula
|
Varun Jampani
|
Pradyumna Narayana
|
Sugato Basu
|
William Yang Wang
|
Xin Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts.Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel Counterfactual Prompt Learning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09% and 25.08% relative improvements across three few-shot scenarios on unseen test sets respectively.
ULN: Towards Underspecified Vision-and-Language Navigation
Weixi Feng
|
Tsu-Jui Fu
|
Yujie Lu
|
William Yang Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Vision-and-Language Navigation (VLN) is a task to guide an embodied agent moving to a target position using language instructions. Despite the significant performance improvement, the wide use of fine-grained instructions fails to characterize more practical linguistic variations in reality. To fill in this gap, we introduce a new setting, namely Underspecified vision-and-Language Navigation (ULN), and associated evaluation datasets. ULN evaluates agents using multi-level underspecified instructions instead of purely fine-grained or coarse-grained, which is a more realistic and general setting. As a primary step toward ULN, we propose a VLN framework that consists of a classification module, a navigation agent, and an Exploitation-to-Exploration (E2E) module. Specifically, we propose to learn Granularity Specific Sub-networks (GSS) for the agent to ground multi-level instructions with minimal additional parameters. Then, our E2E module estimates grounding uncertainty and conducts multi-step lookahead exploration to improve the success rate further. Experimental results show that existing VLN models are still brittle to multi-level language underspecification. Our framework is more robust and outperforms the baselines on ULN by ~10% relative success rate across all levels.
Search
Fix data
Co-authors
- Tsu-Jui Fu 3
- William Yang Wang 2
- Arjun Akula 1
- Sugato Basu 1
- Wenhu Chen 1
- show all...