Weizhao Li
2022
Towards Exploiting Sticker for Multimodal Sentiment Analysis in Social Media: A New Dataset and Baseline
Feng Ge
|
Weizhao Li
|
Haopeng Ren
|
Yi Cai
Proceedings of the 29th International Conference on Computational Linguistics
Sentiment analysis in social media is challenging since posts are short of context. As a popular way to express emotion on social media, stickers related to these posts can supplement missing sentiments and help identify sentiments precisely. However, research about stickers has not been investigated further. To this end, we present a Chinese sticker-based multimodal dataset for the sentiment analysis task (CSMSA). Compared with previous real-world photo-based multimodal datasets, the CSMSA dataset focuses on stickers, conveying more vivid and moving emotions. The sticker-based multimodal sentiment analysis task is challenging in three aspects: inherent multimodality of stickers, significant inter-series variations between stickers, and complex multimodal sentiment fusion. We propose SAMSAM to address the above three challenges. Our model introduces a flexible masked self-attention mechanism to allow the dynamic interaction between post texts and stickers. The experimental results indicate that our model performs best compared with other models. More researches need to be devoted to this field. The dataset is publicly available at https://github.com/Logos23333/CSMSA.
Mitigating Contradictions in Dialogue Based on Contrastive Learning
Weizhao Li
|
Junsheng Kong
|
Ben Liao
|
Yi Cai
Findings of the Association for Computational Linguistics: ACL 2022
Chatbot models have achieved remarkable progress in recent years but tend to yield contradictory responses. In this paper, we exploit the advantage of contrastive learning technique to mitigate this issue. To endow the model with the ability of discriminating contradictory patterns, we minimize the similarity between the target response and contradiction related negative example. The negative example is generated with learnable latent noise, which receives contradiction related feedback from the pretrained critic. Experimental results show that our method helps to avoid contradictions in response generation while preserving response fluency, outperforming existing methods on both automatic and human evaluation.