Wen Lai


2024

pdf bib
LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback
Wen Lai | Mohsen Mesgar | Alexander Fraser
Findings of the Association for Computational Linguistics ACL 2024

To democratize large language models (LLMs) to most natural languages, it is imperative to make these models capable of understanding and generating texts in many languages, in particular low-resource ones. While recent multilingual LLMs demonstrate remarkable performance in such capabilities, these LLMs still support a limited number of human languages due to the lack of training data for low resource languages. Moreover, these LLMs are not yet aligned with human preference for downstream tasks, which is crucial for the success of LLMs in English. In this paper, we introduce xLLaMA-100 and xBLOOM-100 (collectively xLLMs-100), which scale the multilingual capabilities of LLaMA and BLOOM to 100 languages. To do so, we construct two datasets: a multilingual instruction dataset including 100 languages, which represents the largest language coverage to date, and a cross-lingual human feedback dataset encompassing 30 languages. We perform multilingual instruction tuning on the constructed instruction data and further align the LLMs with human feedback using the DPO algorithm on our cross-lingual human feedback dataset. We evaluate the multilingual understanding and generating capabilities of xLLMs-100 on five multilingual benchmarks. Experimental results show that xLLMs-100 consistently outperforms its peers across the benchmarks by considerable margins, defining a new state-of-the-art multilingual LLM that supports 100 languages.

2023

pdf bib
Mitigating Data Imbalance and Representation Degeneration in Multilingual Machine Translation
Wen Lai | Alexandra Chronopoulou | Alexander Fraser
Findings of the Association for Computational Linguistics: EMNLP 2023

Despite advances in multilingual neural machine translation (MNMT), we argue that there are still two major challenges in this area: data imbalance and representation degeneration. The data imbalance problem refers to the imbalance in the amount of parallel corpora for all language pairs, especially for long-tail languages (i.e., very low-resource languages). The representation degeneration problem refers to the problem of encoded tokens tending to appear only in a small subspace of the full space available to the MNMT model. To solve these two issues, we propose Bi-ACL, a framework which only requires target-side monolingual data and a bilingual dictionary to improve the performance of the MNMT model. We define two modules, named bidirectional autoencoder and bidirectional contrastive learning, which we combine with an online constrained beam search and a curriculum learning sampling strategy. Extensive experiments show that our proposed method is more effective than strong baselines both in long-tail languages and in high-resource languages. We also demonstrate that our approach is capable of transferring knowledge between domains and languages in zero-shot scenarios.

2022

pdf bib
m4 Adapter: Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter
Wen Lai | Alexandra Chronopoulou | Alexander Fraser
Findings of the Association for Computational Linguistics: EMNLP 2022

Multilingual neural machine translation models (MNMT) yield state-of-the-art performance when evaluated on data from a domain and language pair seen at training time. However, when a MNMT model is used to translate under domain shift or to a new language pair, performance drops dramatically. We consider a very challenging scenario: adapting the MNMT model both to a new domain and to a new language pair at the same time. In this paper, we propose m^4Adapter (Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter), which combines domain and language knowledge using meta-learning with adapters. We present results showing that our approach is a parameter-efficient solution which effectively adapts a model to both a new language pair and a new domain, while outperforming other adapter methods. An ablation study also shows that our approach more effectively transfers domain knowledge across different languages and language information across different domains.

pdf bib
Improving Both Domain Robustness and Domain Adaptability in Machine Translation
Wen Lai | Jindřich Libovický | Alexander Fraser
Proceedings of the 29th International Conference on Computational Linguistics

We consider two problems of NMT domain adaptation using meta-learning. First, we want to reach domain robustness, i.e., we want to reach high quality on both domains seen in the training data and unseen domains. Second, we want our systems to be adaptive, i.e., making it possible to finetune systems with just hundreds of in-domain parallel sentences. We study the domain adaptability of meta-learning when improving the domain robustness of the model. In this paper, we propose a novel approach, RMLNMT (Robust Meta-Learning Framework for Neural Machine Translation Domain Adaptation), which improves the robustness of existing meta-learning models. More specifically, we show how to use a domain classifier in curriculum learning and we integrate the word-level domain mixing model into the meta-learning framework with a balanced sampling strategy. Experiments on English-German and English-Chinese translation show that RMLNMT improves in terms of both domain robustness and domain adaptability in seen and unseen domains.

2021

pdf bib
The LMU Munich System for the WMT 2021 Large-Scale Multilingual Machine Translation Shared Task
Wen Lai | Jindřich Libovický | Alexander Fraser
Proceedings of the Sixth Conference on Machine Translation

This paper describes the submission of LMU Munich to the WMT 2021 multilingual machine translation task for small track #1, which studies translation between 6 languages (Croatian, Hungarian, Estonian, Serbian, Macedonian, English) in 30 directions. We investigate the extent to which bilingual translation systems can influence multilingual translation systems. More specifically, we trained 30 bilingual translation systems, covering all language pairs, and used data augmentation technologies such as back-translation and knowledge distillation to improve the multilingual translation systems. Our best translation system scores 5 to 6 BLEU higher than a strong baseline system provided by the organizers. As seen in the dynalab leaderboard, our submission is the only fully constrained submission that uses only the corpus provided by the organizers and does not use any pre-trained models.

2018

pdf bib
Tibetan-Chinese Neural Machine Translation based on Syllable Segmentation
Wen Lai | Xiaobing Zhao | Wei Bao
Proceedings of the AMTA 2018 Workshop on Technologies for MT of Low Resource Languages (LoResMT 2018)