Wenbin Hu
2024
Mitigating the Alignment Tax of RLHF
Yong Lin
|
Hangyu Lin
|
Wei Xiong
|
Shizhe Diao
|
Jianmeng Liu
|
Jipeng Zhang
|
Rui Pan
|
Haoxiang Wang
|
Wenbin Hu
|
Hanning Zhang
|
Hanze Dong
|
Renjie Pi
|
Han Zhao
|
Nan Jiang
|
Heng Ji
|
Yuan Yao
|
Tong Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
LLMs acquire a wide range of abilities during pre-training, but aligning LLMs under Reinforcement Learning with Human Feedback (RLHF) can lead to forgetting pretrained abilities, which is also known as the alignment tax. To investigate alignment tax, we conducted experiments with existing RLHF algorithms using OpenLLaMA-3B, which revealed a pronounced alignment tax in NLP tasks. Whereas, despite various techniques to mitigate forgetting, they are often at odds with the RLHF performance, leading to a trade-off between alignment performance and forgetting mitigation, leading to an alignment-forgetting trade-off. In this paper we show that model averaging, which simply interpolates between pre and post RLHF model weights, surprisingly achieves the most strongest alignment-forgetting Pareto front among a wide range of competing methods. To understand its effectiveness, we offer theoretical insights into model averaging, revealing that it enhances performance Pareto front by increasing feature diversity on the layers where tasks share overlapped feature spaces. Empirical evidence corroborates our analysis by showing the benefits of averaging low-level transformer layers. Building on the analysis and the observation that averaging different layers of the transformer leads to significantly different alignment-forgetting trade-offs, we propose Heterogeneous Model Averaging (HMA) to Heterogeneously find various combination ratios of model layers. HMA seeks to maximize the alignment performance while incurring minimal alignment tax. Moreover, we validate HMA’s performance across a range of RLHF algorithms over OpenLLaMA-3B and further extend our findings to Mistral-7B which is evaluated by open-sourced preference model and GPT4. Code available here.
2021
BanditMTL: Bandit-based Multi-task Learning for Text Classification
Yuren Mao
|
Zekai Wang
|
Weiwei Liu
|
Xuemin Lin
|
Wenbin Hu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Task variance regularization, which can be used to improve the generalization of Multi-task Learning (MTL) models, remains unexplored in multi-task text classification. Accordingly, to fill this gap, this paper investigates how the task might be effectively regularized, and consequently proposes a multi-task learning method based on adversarial multi-armed bandit. The proposed method, named BanditMTL, regularizes the task variance by means of a mirror gradient ascent-descent algorithm. Adopting BanditMTL in the multi-task text classification context is found to achieve state-of-the-art performance. The results of extensive experiments back up our theoretical analysis and validate the superiority of our proposals.