Wenbo Zhao


2024

pdf bib
Mitigating Bias for Question Answering Models by Tracking Bias Influence
Mingyu Ma | Jiun-Yu Kao | Arpit Gupta | Yu-Hsiang Lin | Wenbo Zhao | Tagyoung Chung | Wei Wang | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Models of various NLP tasks have been shown to exhibit stereotypes, and the bias in the question answering (QA) models is especially harmful as the output answers might be directly consumed by the end users. There have been datasets to evaluate bias in QA models, while bias mitigation technique for the QA models is still under-explored. In this work, we propose BMBI, an approach to mitigate the bias of multiple-choice QA models. Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance. If the influenced instance is more biased, we derive that the query instance is biased. We then use the bias level detected as an optimization objective to form a multi-task learning setting in addition to the original QA task. We further introduce a new bias evaluation metric to quantify bias in a comprehensive and sensitive way. We show that our method could be applied to multiple QA formulations across multiple bias categories. It can significantly reduce the bias level in all 9 bias categories in the BBQ dataset while maintaining comparable QA accuracy.

2023

pdf bib
Unsupervised Melody-to-Lyrics Generation
Yufei Tian | Anjali Narayan-Chen | Shereen Oraby | Alessandra Cervone | Gunnar Sigurdsson | Chenyang Tao | Wenbo Zhao | Yiwen Chen | Tagyoung Chung | Jing Huang | Nanyun Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic melody-to-lyric generation is a task in which song lyrics are generated to go with a given melody. It is of significant practical interest and more challenging than unconstrained lyric generation as the music imposes additional constraints onto the lyrics. The training data is limited as most songs are copyrighted, resulting in models that underfit the complicated cross-modal relationship between melody and lyrics. In this work, we propose a method for generating high-quality lyrics without training on any aligned melody-lyric data. Specifically, we design a hierarchical lyric generation framework that first generates a song outline and second the complete lyrics. The framework enables disentanglement of training (based purely on text) from inference (melody-guided text generation) to circumvent the shortage of parallel data. We leverage the segmentation and rhythm alignment between melody and lyrics to compile the given melody into decoding constraints as guidance during inference. The two-step hierarchical design also enables content control via the lyric outline, a much-desired feature for democratizing collaborative song creation. Experimental results show that our model can generate high-quality lyrics that are more on-topic, singable, intelligible, and coherent than strong baselines, for example SongMASS, a SOTA model trained on a parallel dataset, with a 24% relative overall quality improvement based on human ratings. Our code is available at https://github.com/amazon-science/unsupervised-melody-to-lyrics-generation.

pdf bib
SPC: Soft Prompt Construction for Cross Domain Generalization
Wenbo Zhao | Arpit Gupta | Tagyoung Chung | Jing Huang
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

Recent advances in prompt tuning have proven effective as a new language modeling paradigm for various natural language understanding tasks. However, it is challenging to adapt the soft prompt embeddings to different domains or generalize to low-data settings when learning soft prompts itself is unstable, task-specific, and bias-prone. This paper proposes a principled learning framework—soft prompt construction (SPC)—to facilitate learning domain-adaptable soft prompts. Derived from the SPC framework is a simple loss that can plug into various models and tuning approaches to improve their cross-domain performance. We show SPC can improve upon SOTA for contextual query rewriting, summarization, and paraphrase detection by up to 5%, 19%, and 16%, respectively.

2019

pdf bib
Simple Question Answering with Subgraph Ranking and Joint-Scoring
Wenbo Zhao | Tagyoung Chung | Anuj Goyal | Angeliki Metallinou
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Knowledge graph based simple question answering (KBSQA) is a major area of research within question answering. Although only dealing with simple questions, i.e., questions that can be answered through a single knowledge base (KB) fact, this task is neither simple nor close to being solved. Targeting on the two main steps, subgraph selection and fact selection, the literature has developed sophisticated approaches. However, the importance of subgraph ranking and leveraging the subject–relation dependency of a KB fact have not been sufficiently explored. Motivated by this, we present a unified framework to describe and analyze existing approaches. Using this framework as a starting point we focus on two aspects: improving subgraph selection through a novel ranking method, and leveraging the subject–relation dependency by proposing a joint scoring CNN model with a novel loss function that enforces the well-order of scores. Our methods achieve a new state of the art (85.44% in accuracy) on the SimpleQuestions dataset.