Wenhan Xia
2024
Data Augmentation using LLMs: Data Perspectives, Learning Paradigms and Challenges
Bosheng Ding
|
Chengwei Qin
|
Ruochen Zhao
|
Tianze Luo
|
Xinze Li
|
Guizhen Chen
|
Wenhan Xia
|
Junjie Hu
|
Anh Tuan Luu
|
Shafiq Joty
Findings of the Association for Computational Linguistics: ACL 2024
In the rapidly evolving field of large language models (LLMs), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of LLMs on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From both data and learning perspectives, we examine various strategies that utilize LLMs for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for diverse forms of further training. Additionally, this paper highlights the primary open challenges faced in this domain, ranging from controllable data augmentation to multi-modal data augmentation. This survey highlights a paradigm shift introduced by LLMs in DA, and aims to serve as a comprehensive guide for researchers and practitioners.
Lifelong Event Detection with Embedding Space Separation and Compaction
Chengwei Qin
|
Ruirui Chen
|
Ruochen Zhao
|
Wenhan Xia
|
Shafiq Joty
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
To mitigate forgetting, existing lifelong event detection methods typically maintain a memory module and replay the stored memory data during the learning of a new task. However, the simple combination of memory data and new-task samples can still result in substantial forgetting of previously acquired knowledge, which may occur due to the potential overlap between the feature distribution of new data and the previously learned embedding space. Moreover, the model suffers from overfitting on the few memory samples rather than effectively remembering learned patterns. To address the challenges of forgetting and overfitting, we propose a novel method based on embedding space separation and compaction. Our method alleviates forgetting of previously learned tasks by forcing the feature distribution of new data away from the previous embedding space. It also mitigates overfitting by a memory calibration mechanism that encourages memory data to be close to its prototype to enhance intra-class compactness. In addition, the learnable parameters of the new task are initialized by drawing upon acquired knowledge from the previously learned task to facilitate forward knowledge transfer. With extensive experiments, we demonstrate that our method can significantly outperform previous state-of-the-art approaches.
Search
Co-authors
- Chengwei Qin 2
- Ruochen Zhao 2
- Shafiq Joty 2
- Bosheng Ding 1
- Tianze Luo 1
- show all...