Medical dialogue systems have attracted significant attention for their potential to act as medical assistants. Enabling these medical systems to emulate clinicians’ diagnostic reasoning process has been the long-standing research focus. Previous studies rudimentarily realized the simulation of clinicians’ diagnostic process by fine-tuning language models on high-quality dialogue datasets. Nonetheless, they overly focus on the outcomes of the clinician’s reasoning process while ignoring their internal thought processes and alignment with clinician preferences. Our work aims to build a medical dialogue system that aligns with clinicians’ diagnostic reasoning processes. We propose a novel framework, Emulation, designed to generate an appropriate response that relies on abductive and deductive diagnostic reasoning analyses and aligns with clinician preferences through thought process modeling. Experimental results on two datasets confirm the efficacy of Emulation. Crucially, our framework furnishes clear explanations for the generated responses, enhancing its transparency in medical consultations.
This paper explores the task of radiology report generation, which aims at generating free-text descriptions for a set of radiographs. One significant challenge of this task is how to correctly maintain the consistency between the images and the lengthy report. Previous research explored solving this issue through planning-based methods, which generate reports only based on high-level plans. However, these plans usually only contain the major observations from the radiographs (e.g., lung opacity), lacking much necessary information, such as the observation characteristics and preliminary clinical diagnoses. To address this problem, the system should also take the image information into account together with the textual plan and perform stronger reasoning during the generation process. In this paper, we propose an Observation-guided radiology Report Generation framework (ORGan). It first produces an observation plan and then feeds both the plan and radiographs for report generation, where an observation graph and a tree reasoning mechanism are adopted to precisely enrich the plan information by capturing the multi-formats of each observation. Experimental results demonstrate that our framework outperforms previous state-of-the-art methods regarding text quality and clinical efficacy.
Medical dialogue systems (MDS) aim to provide patients with medical services, such as diagnosis and prescription. Since most patients cannot precisely describe their symptoms, dialogue understanding is challenging for MDS. Previous studies mainly addressed this by extracting the mentioned medical entities as critical dialogue history information. In this work, we argue that it is also essential to capture the transitions of the medical entities and the doctor’s dialogue acts in each turn, as they help the understanding of how the dialogue flows and enhance the prediction of the entities and dialogue acts to be adopted in the following turn. Correspondingly, we propose a Dual Flow enhanced Medical (DFMed) dialogue generation framework. It extracts the medical entities and dialogue acts used in the dialogue history and models their transitions with an entity-centric graph flow and a sequential act flow, respectively. We employ two sequential models to encode them and devise an interweaving component to enhance their interactions. Experiments on two datasets demonstrate that our method exceeds baselines in both automatic and manual evaluations.
Automating radiology report generation can significantly alleviate radiologists’ workloads. Previous research has primarily focused on realizing highly concise observations while neglecting the precise attributes that determine the severity of diseases (e.g., small pleural effusion). Since incorrect attributes will lead to imprecise radiology reports, strengthening the generation process with precise attribute modeling becomes necessary. Additionally, the temporal information contained in the historical records, which is crucial in evaluating a patient’s current condition (e.g., heart size is unchanged), has also been largely disregarded. To address these issues, we propose RECAP, which generates precise and accurate radiology reports via dynamic disease progression reasoning. Specifically, RECAP first predicts the observations and progressions (i.e., spatiotemporal information) given two consecutive radiographs. It then combines the historical records, spatiotemporal information, and radiographs for report generation, where a disease progression graph and dynamic progression reasoning mechanism are devised to accurately select the attributes of each observation and progression. Extensive experiments on two publicly available datasets demonstrate the effectiveness of our model.
Emotion-cause pair extraction (ECPE), which aims at simultaneously extracting emotion-cause pairs that express emotions and their corresponding causes in a document, plays a vital role in understanding natural languages. Considering that most emotions usually have few causes mentioned in their contexts, we present a novel end-to-end Pair Graph Convolutional Network (PairGCN) to model pair-level contexts so that to capture the dependency information among local neighborhood candidate pairs. Moreover, in the graphical network, contexts are grouped into three types and each type of contexts is propagated by its own way. Experiments on a benchmark Chinese emotion-cause pair extraction corpus demonstrate the effectiveness of the proposed model.
The goal of fine-grained propaganda detection is to determine whether a given sentence uses propaganda techniques (sentence-level) or to recognize which techniques are used (fragment-level). This paper presents the sys- tem of our participation in the sentence-level subtask of the propaganda detection shared task. In order to better utilize the document information, we construct context-dependent input pairs (sentence-title pair and sentence- context pair) to fine-tune the pretrained BERT, and we also use the undersampling method to tackle the problem of imbalanced data.
We present a neural network-based joint approach for emotion classification and emotion cause detection, which attempts to capture mutual benefits across the two sub-tasks of emotion analysis. Considering that emotion classification and emotion cause detection need different kinds of features (affective and event-based separately), we propose a joint encoder which uses a unified framework to extract features for both sub-tasks and a joint model trainer which simultaneously learns two models for the two sub-tasks separately. Our experiments on Chinese microblogs show that the joint approach is very promising.