Wenkai Yang


2025

pdf bib
Distilling Rule-based Knowledge into Large Language Models
Wenkai Yang | Yankai Lin | Jie Zhou | Ji-Rong Wen
Proceedings of the 31st International Conference on Computational Linguistics

Large language models (LLMs) have shown incredible performance in completing various real-world tasks. The current paradigm of knowledge learning for LLMs is mainly based on learning from examples, in which LLMs learn the internal rule implicitly from a certain number of supervised examples. However, this learning paradigm may not well learn those complicated rules, especially when the training examples are limited. We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules. That is, humans can learn new tasks or grasp new knowledge quickly and generalize well given only a detailed rule and a few optional examples. Therefore, in this paper, we aim to explore the feasibility of this new learning paradigm, which targets on encoding rule-based knowledge into LLMs. We further propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules, and then explicitly encode the knowledge into the parameters of LLMs by learning from the above in-context signals produced inside the model. Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability. Warning: This paper may contain examples with offensive content.

pdf bib
Exploring Backdoor Vulnerabilities of Chat Models
Wenkai Yang | Yunzhuo Hao | Yankai Lin
Proceedings of the 31st International Conference on Computational Linguistics

Recent researches have shown that Large Language Models (LLMs) are susceptible to a security threat known as Backdoor Attack. The backdoored model will behave well in normal cases but exhibit malicious behaviours on inputs inserted with a specific backdoor trigger. Current backdoor studies on LLMs predominantly focus on single-turn instruction-tuned LLMs, while neglecting another realistic scenario where LLMs are fine-tuned on multi-turn conversational data to be chat models. Chat models are extensively adopted across various real-world scenarios, thus the security of chat models deserves increasing attention. Unfortunately, we point out that the flexible multi-turn interaction format instead increases the flexibility of trigger designs and amplifies the vulnerability of chat models to backdoor attacks. In this work, we reveal and achieve a novel backdoor attacking method on chat models by distributing multiple trigger scenarios across user inputs in different rounds, and making the backdoor be triggered only when all trigger scenarios have appeared in the historical conversations. Experimental results demonstrate that our method can achieve high attack success rates (e.g., over 90% ASR on Vicuna-7B) while successfully maintaining the normal capabilities of chat models on providing helpful responses to benign user requests. Also, the backdoor cannot be easily removed by the downstream re-alignment, highlighting the importance of continued research and attention to the security concerns of chat models. Warning: This paper may contain toxic examples.

2023

pdf bib
Fine-Tuning Deteriorates General Textual Out-of-Distribution Detection by Distorting Task-Agnostic Features
Sishuo Chen | Wenkai Yang | Xiaohan Bi | Xu Sun
Findings of the Association for Computational Linguistics: EACL 2023

Detecting out-of-distribution (OOD) inputs is crucial for the safe deployment of natural language processing (NLP) models. Though existing methods, especially those based on the statistics in the feature space of fine-tuned pre-trained language models (PLMs), are claimed to be effective, their effectiveness on different types of distribution shifts remains underexplored. In this work, we take the first step to comprehensively evaluate the mainstream textual OOD detection methods for detecting semantic and non-semantic shifts. We find that: (1) no existing method behaves well in both settings; (2) fine-tuning PLMs on in-distribution data benefits detecting semantic shifts but severely deteriorates detecting non-semantic shifts, which can be attributed to the distortion of task-agnostic features. To alleviate the issue, we present a simple yet effective general OOD score named GNOME that integrates the confidence scores derived from the task-agnostic and task-specific representations. Experiments show that GNOME works well in both semantic and non-semantic shift scenarios, and further brings significant improvement on two cross-task benchmarks where both kinds of shifts simultaneously take place. Our code is available at https://github.com/lancopku/GNOME.

pdf bib
Communication Efficient Federated Learning for Multilingual Neural Machine Translation with Adapter
Yi Liu | Xiaohan Bi | Lei Li | Sishuo Chen | Wenkai Yang | Xu Sun
Findings of the Association for Computational Linguistics: ACL 2023

Federated Multilingual Neural Machine Translation (Fed-MNMT) has emerged as a promising paradigm for institutions with limited language resources. This approach allows multiple institutions to act as clients and train a unified model through model synchronization, rather than collecting sensitive data for centralized training. This significantly reduces the cost of corpus collection and preserves data privacy. However, as pre-trained language models (PLMs) continue to increase in size, the communication cost for transmitting parameters during synchronization has become a training speed bottleneck. In this paper, we propose a communication-efficient Fed-MNMT framework that addresses this issue by keeping PLMs frozen and only transferring lightweight adapter modules between clients. Since different language pairs exhibit substantial discrepancies in data distributions, adapter parameters of clients may conflict with each other. To tackle this, we explore various clustering strategies to group parameters for integration and mitigate the negative effects of conflicting parameters. Experimental results demonstrate that our framework reduces communication cost by over 98% while achieving similar or even better performance compared to competitive baselines. Further analysis reveals that clustering strategies effectively solve the problem of linguistic discrepancy and pruning adapter modules further improves communication efficiency.

2022

pdf bib
Expose Backdoors on the Way: A Feature-Based Efficient Defense against Textual Backdoor Attacks
Sishuo Chen | Wenkai Yang | Zhiyuan Zhang | Xiaohan Bi | Xu Sun
Findings of the Association for Computational Linguistics: EMNLP 2022

Natural language processing (NLP) models are known to be vulnerable to backdoor attacks, which poses a newly arisen threat to NLP models. Prior online backdoor defense methods for NLP models only focus on the anomalies at either the input or output level, still suffering from fragility to adaptive attacks and high computational cost. In this work, we take the first step to investigate the unconcealment of textual poisoned samples at the intermediate-feature level and propose a feature-based efficient online defense method. Through extensive experiments on existing attacking methods, we find that the poisoned samples are far away from clean samples in the intermediate feature space of a poisoned NLP model. Motivated by this observation, we devise a distance-based anomaly score (DAN) to distinguish poisoned samples from clean samples at the feature level. Experiments on sentiment analysis and offense detection tasks demonstrate the superiority of DAN, as it substantially surpasses existing online defense methods in terms of defending performance and enjoys lower inference costs. Moreover, we show that DAN is also resistant to adaptive attacks based on feature-level regularization. Our code is available at https://github.com/lancopku/DAN.

2021

pdf bib
Rethinking Stealthiness of Backdoor Attack against NLP Models
Wenkai Yang | Yankai Lin | Peng Li | Jie Zhou | Xu Sun
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent researches have shown that large natural language processing (NLP) models are vulnerable to a kind of security threat called the Backdoor Attack. Backdoor attacked models can achieve good performance on clean test sets but perform badly on those input sentences injected with designed trigger words. In this work, we point out a potential problem of current backdoor attacking research: its evaluation ignores the stealthiness of backdoor attacks, and most of existing backdoor attacking methods are not stealthy either to system deployers or to system users. To address this issue, we first propose two additional stealthiness-based metrics to make the backdoor attacking evaluation more credible. We further propose a novel word-based backdoor attacking method based on negative data augmentation and modifying word embeddings, making an important step towards achieving stealthy backdoor attacking. Experiments on sentiment analysis and toxic detection tasks show that our method is much stealthier while maintaining pretty good attacking performance. Our code is available at https://github.com/lancopku/SOS.

pdf bib
RAP: Robustness-Aware Perturbations for Defending against Backdoor Attacks on NLP Models
Wenkai Yang | Yankai Lin | Peng Li | Jie Zhou | Xu Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Backdoor attacks, which maliciously control a well-trained model’s outputs of the instances with specific triggers, are recently shown to be serious threats to the safety of reusing deep neural networks (DNNs). In this work, we propose an efficient online defense mechanism based on robustness-aware perturbations. Specifically, by analyzing the backdoor training process, we point out that there exists a big gap of robustness between poisoned and clean samples. Motivated by this observation, we construct a word-based robustness-aware perturbation to distinguish poisoned samples from clean samples to defend against the backdoor attacks on natural language processing (NLP) models. Moreover, we give a theoretical analysis about the feasibility of our robustness-aware perturbation-based defense method. Experimental results on sentiment analysis and toxic detection tasks show that our method achieves better defending performance and much lower computational costs than existing online defense methods. Our code is available at https://github.com/lancopku/RAP.

pdf bib
Be Careful about Poisoned Word Embeddings: Exploring the Vulnerability of the Embedding Layers in NLP Models
Wenkai Yang | Lei Li | Zhiyuan Zhang | Xuancheng Ren | Xu Sun | Bin He
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent studies have revealed a security threat to natural language processing (NLP) models, called the Backdoor Attack. Victim models can maintain competitive performance on clean samples while behaving abnormally on samples with a specific trigger word inserted. Previous backdoor attacking methods usually assume that attackers have a certain degree of data knowledge, either the dataset which users would use or proxy datasets for a similar task, for implementing the data poisoning procedure. However, in this paper, we find that it is possible to hack the model in a data-free way by modifying one single word embedding vector, with almost no accuracy sacrificed on clean samples. Experimental results on sentiment analysis and sentence-pair classification tasks show that our method is more efficient and stealthier. We hope this work can raise the awareness of such a critical security risk hidden in the embedding layers of NLP models. Our code is available at https://github.com/lancopku/Embedding-Poisoning.