Wenqi Zhang


pdf bib
An Expression Tree Decoding Strategy for Mathematical Equation Generation
Wenqi Zhang | Yongliang Shen | Qingpeng Nong | Zeqi Tan | Yanna Ma | Weiming Lu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Generating mathematical equations from natural language requires an accurate understanding of the relations among math expressions. Existing approaches can be broadly categorized into token-level and expression-level generation. The former treats equations as a mathematical language, sequentially generating math tokens. Expression-level methods generate each expression one by one. However, each expression represents a solving step, and there naturally exist parallel or dependent relations between these steps, which are ignored by current sequential methods. Therefore, we integrate tree structure into the expression-level generation and advocate an expression tree decoding strategy. To generate a tree with expression as its node, we employ a layer-wise parallel decoding strategy: we decode multiple independent expressions (leaf nodes) in parallel at each layer and repeat parallel decoding layer by layer to sequentially generate these parent node expressions that depend on others. Besides, a bipartite matching algorithm is adopted to align multiple predictions with annotations for each layer. Experiments show our method outperforms other baselines, especially for these equations with complex structures.

pdf bib
Enhancing Emotion Recognition in Conversation via Multi-view Feature Alignment and Memorization
Guiyang Hou | Yongliang Shen | Wenqi Zhang | Wei Xue | Weiming Lu
Findings of the Association for Computational Linguistics: EMNLP 2023

Emotion recognition in conversation (ERC) has attracted increasing attention in natural language processing community. Previous work commonly first extract semantic-view features via fine-tuning PLMs, then models context-view features based on the obtained semantic-view features by various graph neural networks. However, it is difficult to fully model interaction between utterances simply through a graph neural network and the features at semantic-view and context-view are not well aligned. Moreover, the previous parametric learning paradigm struggle to learn the patterns of tail class given fewer instances. To this end, we treat the pre-trained conversation model as a prior knowledge base and from which we elicit correlations between utterances by a probing procedure. And we adopt supervised contrastive learning to align semantic-view and context-view features, these two views of features work together in a complementary manner, contributing to ERC from distinct perspectives. Meanwhile, we propose a new semi-parametric paradigm of inferencing through memorization to solve the recognition problem of tail class samples. We consistently achieve state-of-the-art results on four widely used benchmarks. Extensive experiments demonstrate the effectiveness of our proposed multi-view feature alignment and memorization.

pdf bib
PromptNER: Prompt Locating and Typing for Named Entity Recognition
Yongliang Shen | Zeqi Tan | Shuhui Wu | Wenqi Zhang | Rongsheng Zhang | Yadong Xi | Weiming Lu | Yueting Zhuang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompt learning is a new paradigm for utilizing pre-trained language models and has achieved great success in many tasks. To adopt prompt learning in the NER task, two kinds of methods have been explored from a pair of symmetric perspectives, populating the template by enumerating spans to predict their entity types or constructing type-specific prompts to locate entities. However, these methods not only require a multi-round prompting manner with a high time overhead and computational cost, but also require elaborate prompt templates, that are difficult to apply in practical scenarios. In this paper, we unify entity locating and entity typing into prompt learning, and design a dual-slot multi-prompt template with the position slot and type slot to prompt locating and typing respectively. Multiple prompts can be input to the model simultaneously, and then the model extracts all entities by parallel predictions on the slots. To assign labels for the slots during training, we design a dynamic template filling mechanism that uses the extended bipartite graph matching between prompts and the ground-truth entities. We conduct experiments in various settings, including resource-rich flat and nested NER datasets and low-resource in-domain and cross-domain datasets. Experimental results show that the proposed model achieves a significant performance improvement, especially in the cross-domain few-shot setting, which outperforms the state-of-the-art model by +7.7% on average.


pdf bib
Multi-View Reasoning: Consistent Contrastive Learning for Math Word Problem
Wenqi Zhang | Yongliang Shen | Yanna Ma | Xiaoxia Cheng | Zeqi Tan | Qingpeng Nong | Weiming Lu
Findings of the Association for Computational Linguistics: EMNLP 2022

Math word problem solver requires both precise relation reasoning about quantities in the text and reliable generation for the diverse equation. Current sequence-to-tree or relation extraction methods regard this only from a fixed view, struggling to simultaneously handle complex semantics and diverse equations. However, human solving naturally involves two consistent reasoning views: top-down and bottom-up, just as math equations also can be expressed in multiple equivalent forms: pre-order and post-order. We propose a multi-view consistent contrastive learning for a more complete semantics-to-equation mapping. The entire process is decoupled into two independent but consistent views: top-down decomposition and bottom-up construction, and the two reasoning views are aligned in multi-granularity for consistency, enhancing global generation and precise reasoning. Experiments on multiple datasets across two languages show our approach significantly outperforms the existing baselines, especially on complex problems. We also show after consistent alignment, multi-view can absorb the merits of both views and generate more diverse results consistent with the mathematical laws.

pdf bib
Query-based Instance Discrimination Network for Relational Triple Extraction
Zeqi Tan | Yongliang Shen | Xuming Hu | Wenqi Zhang | Xiaoxia Cheng | Weiming Lu | Yueting Zhuang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Joint entity and relation extraction has been a core task in the field of information extraction. Recent approaches usually consider the extraction of relational triples from a stereoscopic perspective, either learning a relation-specific tagger or separate classifiers for each relation type. However, they still suffer from error propagation, relation redundancy and lack of high-level connections between triples. To address these issues, we propose a novel query-based approach to construct instance-level representations for relational triples. By metric-based comparison between query embeddings and token embeddings, we can extract all types of triples in one step, thus eliminating the error propagation problem. In addition, we learn the instance-level representation of relational triples via contrastive learning. In this way, relational triples can not only enclose rich class-level semantics but also access to high-order global connections. Experimental results show that our proposed method achieves the state of the art on five widely used benchmarks.