Wensheng Zhang
2023
BioFEG: Generate Latent Features for Biomedical Entity Linking
Xuhui Sui
|
Ying Zhang
|
Xiangrui Cai
|
Kehui Song
|
Baohang Zhou
|
Xiaojie Yuan
|
Wensheng Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Biomedical entity linking is an essential task in biomedical text processing, which aims to map entity mentions in biomedical text, such as clinical notes, to standard terms in a given knowledge base. However, this task is challenging due to the rarity of many biomedical entities in real-world scenarios, which often leads to a lack of annotated data for them. Limited by understanding these unseen entities, traditional biomedical entity linking models suffer from multiple types of linking errors. In this paper, we propose a novel latent feature generation framework BioFEG to address these challenges. Specifically, our BioFEG leverages domain knowledge to train a generative adversarial network, which generates latent semantic features of corresponding mentions for unseen entities. Utilizing these features, we fine-tune our entity encoder to capture fine-grained coherence information of unseen entities and better understand them. This allows models to make linking decisions more accurately, particularly for ambiguous mentions involving rare entities. Extensive experiments on the two benchmark datasets demonstrate the superiority of our proposed framework.
Selecting Key Views for Zero-Shot Entity Linking
Xuhui Sui
|
Ying Zhang
|
Kehui Song
|
Baohang Zhou
|
Xiaojie Yuan
|
Wensheng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023
Entity linking, which aligns mentions in the text to entities in knowledge bases, is essential for many natural language processing tasks. Considering the real-world scenarios, recent research hotspot of entity linking has focused on the zero-shot setting, where mentions need to link to unseen entities and only the description of each entity is provided. This task challenges the language understanding ability of models to capture the coherence evidence between the mention context and entity description. However, entity descriptions often contain rich information from multiple views, and a mention with context only relates to a small part of the information. Other irrelevant information will introduce noise, which interferes with models to make the right judgments. Furthermore, the existence of these information also makes it difficult to synthesize key information. To solve these problems, we select key views from descriptions and propose a KVZEL framework for zero-shot entity linking. Specifically, our KVZEL first adopts unsupervised clustering to form sub views. Then, it employs a mention-aware key views selection module to iteratively accumulate mention-focused views. This puts emphasis on capturing mention-related information and allows long-range key information integration. Finally, we aggregate key views to make the final decision. Experimental results show the effectiveness of our KVZEL and it achieves the new state-of-the-art on the zero-shot entity linking dataset.