Wenxiang Jiao


2023

pdf bib
kNN-TL: k-Nearest-Neighbor Transfer Learning for Low-Resource Neural Machine Translation
Shudong Liu | Xuebo Liu | Derek F. Wong | Zhaocong Li | Wenxiang Jiao | Lidia S. Chao | Min Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transfer learning has been shown to be an effective technique for enhancing the performance of low-resource neural machine translation (NMT). This is typically achieved through either fine-tuning a child model with a pre-trained parent model, or by utilizing the out- put of the parent model during the training of the child model. However, these methods do not make use of the parent knowledge during the child inference, which may limit the translation performance. In this paper, we propose a k-Nearest-Neighbor Transfer Learning (kNN-TL) approach for low-resource NMT, which leverages the parent knowledge throughout the entire developing process of the child model. Our approach includes a parent-child representation alignment method, which ensures consistency in the output representations between the two models, and a child-aware datastore construction method that improves inference efficiency by selectively distilling the parent datastore based on relevance to the child model. Experimental results on four low-resource translation tasks show that kNN-TL outperforms strong baselines. Extensive analyses further demonstrate the effectiveness of our approach. Code and scripts are freely available at https://github.com/NLP2CT/kNN-TL.

pdf bib
Cross-modality Data Augmentation for End-to-End Sign Language Translation
Jinhui Ye | Wenxiang Jiao | Xing Wang | Zhaopeng Tu | Hui Xiong
Findings of the Association for Computational Linguistics: EMNLP 2023

End-to-end sign language translation (SLT) aims to directly convert sign language videos into spoken language texts without intermediate representations. It has been challenging due to the data scarcity of labeled data and the modality gap between sign videos and texts. To tackle these challenges, we propose a novel Cross-modality Data Augmentation (XmDA) framework to transfer the powerful gloss-to-text translation capabilities to end-to-end sign language translation (i.e., video-to-text). Specifically, XmDA consists of two key components: cross-modality mix-up and cross-modality knowledge distillation. The former one explicitly encourages the alignment between sign video features and gloss embeddings to bridge the modality gap. The latter one utilizes the generation knowledge from gloss-to-text teacher models to guide the spoken language text generation. Experimental results on two widely used SLT datasets, i.e., PHOENIX-2014T and CSL-Daily, demonstrate that the proposed XmDA framework significantly and consistently outperforms the baseline models. Extensive analyses confirm our claim that XmDA enhances end-to-end sign language translation by reducing the representation distance between sign videos and glosses, as well as improving the translation of low-frequency words and long sentences.

pdf bib
ParroT: Translating during Chat using Large Language Models tuned with Human Translation and Feedback
Wenxiang Jiao | Jen-tse Huang | Wenxuan Wang | Zhiwei He | Tian Liang | Xing Wang | Shuming Shi | Zhaopeng Tu
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) like ChatGPT have exhibited remarkable abilities on a wide range of natural language processing (NLP) tasks, including various machine translation abilities accomplished during chat. However, these models are only accessible through restricted APIs, which creates barriers to new research and advancements in the field. Therefore, we propose ParroT, a framework to enhance and regulate the translation abilities during chat based on open-source LLMs (e.g., LLaMA), human-written translation and feedback data. Specifically, ParroT reformulates translation data into the instruction-following style, and introduces a “Hint” field for incorporating extra requirements to regulate the translation process. Accordingly, we propose three instruction types for finetuning ParroT models, including translation instruction, contrastive instruction, and error-guided instruction. Experiments on Flores subsets and WMT22 test sets suggest that translation instruction improves the translation performance of vanilla LLMs significantly while error-guided instruction can lead to further improvement, which demonstrates the importance of learning from low-quality translations annotated by humans. We also demonstrate the potential of automatic evaluation tools in providing quality information of translations, when constructing error-guided instructions for directions that lack human annotation data. Please refer to our Github project for more implementation details: https://github.com/wxjiao/ParroT.

pdf bib
Scaling Back-Translation with Domain Text Generation for Sign Language Gloss Translation
Jinhui Ye | Wenxiang Jiao | Xing Wang | Zhaopeng Tu
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Sign language gloss translation aims to translate the sign glosses into spoken language texts, which is challenging due to the scarcity of labeled gloss-text parallel data. Back translation (BT), which generates pseudo-parallel data by translating in-domain spoken language texts into sign glosses, has been applied to alleviate the data scarcity problem. However, the lack of large-scale high-quality in-domain spoken language text data limits the effect of BT. In this paper, to overcome the limitation, we propose a Prompt based domain text Generation (PGen) approach to produce the large-scale in-domain spoken language text data. Specifically, PGen randomly concatenates sentences from the original in-domain spoken language text data as prompts to induce a pre-trained language model (i.e., GPT-2) to generate spoken language texts in a similar style. Experimental results on three benchmarks of sign language gloss translation in varied languages demonstrate that BT with spoken language texts generated by PGen significantly outperforms the compared methods. In addition, as the scale of spoken language texts generated by PGen increases, the BT technique can achieve further improvements, demonstrating the effectiveness of our approach. We release the code and data for facilitating future research in this field.

2022

pdf bib
Tencent’s Multilingual Machine Translation System for WMT22 Large-Scale African Languages
Wenxiang Jiao | Zhaopeng Tu | Jiarui Li | Wenxuan Wang | Jen-tse Huang | Shuming Shi
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes Tencent’s multilingual machine translation systems for the WMT22 shared task on Large-Scale Machine Translation Evaluation for African Languages. We participated in the constrained translation track in which only the data and pretrained models provided by the organizer are allowed. The task is challenging due to three problems, including the absence of training data for some to-be-evaluated language pairs, the uneven optimization of language pairs caused by data imbalance, and the curse of multilinguality. To address these problems, we adopt data augmentation, distributionally robust optimization, and language family grouping, respectively, to develop our multilingual neural machine translation (MNMT) models. Our submissions won the 1st place on the blind test sets in terms of the automatic evaluation metrics. Codes, models, and detailed competition results are available at https://github.com/wxjiao/WMT2022-Large-Scale-African.

pdf bib
Understanding and Improving Sequence-to-Sequence Pretraining for Neural Machine Translation
Wenxuan Wang | Wenxiang Jiao | Yongchang Hao | Xing Wang | Shuming Shi | Zhaopeng Tu | Michael Lyu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we present a substantial step in better understanding the SOTA sequence-to-sequence (Seq2Seq) pretraining for neural machine translation (NMT). We focus on studying the impact of the jointly pretrained decoder, which is the main difference between Seq2Seq pretraining and previous encoder-based pretraining approaches for NMT. By carefully designing experiments on three language pairs, we find that Seq2Seq pretraining is a double-edged sword: On one hand, it helps NMT models to produce more diverse translations and reduce adequacy-related translation errors. On the other hand, the discrepancies between Seq2Seq pretraining and NMT finetuning limit the translation quality (i.e., domain discrepancy) and induce the over-estimation issue (i.e., objective discrepancy). Based on these observations, we further propose simple and effective strategies, named in-domain pretraining and input adaptation to remedy the domain and objective discrepancies, respectively. Experimental results on several language pairs show that our approach can consistently improve both translation performance and model robustness upon Seq2Seq pretraining.

pdf bib
Adapters for Enhanced Modeling of Multilingual Knowledge and Text
Yifan Hou | Wenxiang Jiao | Meizhen Liu | Carl Allen | Zhaopeng Tu | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EMNLP 2022

Large language models appear to learn facts from the large text corpora they are trained on. Such facts are encoded implicitly within their many parameters, making it difficult to verify or manipulate what knowledge has been learned. Language models have recently been extended to multilingual language models (MLLMs), enabling knowledge to be learned across hundreds of languages. Meanwhile, knowledge graphs contain facts in an explicit triple format, which require careful and costly curation and are only available in a few high-resource languages, restricting their research and application. To address these issues, we propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages, including low-resource ones. Specifically, we introducea lightweight adapter set to enhance MLLMs with cross-lingual entity alignment and facts from MLKGs for many languages. Experiments on common benchmarks show that such enhancement benefits both MLLMs and MLKGs, achieving: (1) comparable or improved performance for knowledge graph completion and entity alignment relative to baselines, especially for low-resource languages (for which knowledge graphs are unavailable); and (2) improved MLLM performance on language understanding tasks that require multilingual factual knowledge; all while maintaining performance on other general language tasks.

2021

pdf bib
Self-Training Sampling with Monolingual Data Uncertainty for Neural Machine Translation
Wenxiang Jiao | Xing Wang | Zhaopeng Tu | Shuming Shi | Michael Lyu | Irwin King
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Self-training has proven effective for improving NMT performance by augmenting model training with synthetic parallel data. The common practice is to construct synthetic data based on a randomly sampled subset of large-scale monolingual data, which we empirically show is sub-optimal. In this work, we propose to improve the sampling procedure by selecting the most informative monolingual sentences to complement the parallel data. To this end, we compute the uncertainty of monolingual sentences using the bilingual dictionary extracted from the parallel data. Intuitively, monolingual sentences with lower uncertainty generally correspond to easy-to-translate patterns which may not provide additional gains. Accordingly, we design an uncertainty-based sampling strategy to efficiently exploit the monolingual data for self-training, in which monolingual sentences with higher uncertainty would be sampled with higher probability. Experimental results on large-scale WMT English⇒German and English⇒Chinese datasets demonstrate the effectiveness of the proposed approach. Extensive analyses suggest that emphasizing the learning on uncertain monolingual sentences by our approach does improve the translation quality of high-uncertainty sentences and also benefits the prediction of low-frequency words at the target side.

pdf bib
Multi-Task Learning with Shared Encoder for Non-Autoregressive Machine Translation
Yongchang Hao | Shilin He | Wenxiang Jiao | Zhaopeng Tu | Michael Lyu | Xing Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Non-Autoregressive machine Translation (NAT) models have demonstrated significant inference speedup but suffer from inferior translation accuracy. The common practice to tackle the problem is transferring the Autoregressive machine Translation (AT) knowledge to NAT models, e.g., with knowledge distillation. In this work, we hypothesize and empirically verify that AT and NAT encoders capture different linguistic properties of source sentences. Therefore, we propose to adopt multi-task learning to transfer the AT knowledge to NAT models through encoder sharing. Specifically, we take the AT model as an auxiliary task to enhance NAT model performance. Experimental results on WMT14 En-De and WMT16 En-Ro datasets show that the proposed Multi-Task NAT achieves significant improvements over the baseline NAT models. Furthermore, the performance on large-scale WMT19 and WMT20 En-De datasets confirm the consistency of our proposed method. In addition, experimental results demonstrate that our Multi-Task NAT is complementary to knowledge distillation, the standard knowledge transfer method for NAT.

2020

pdf bib
Data Rejuvenation: Exploiting Inactive Training Examples for Neural Machine Translation
Wenxiang Jiao | Xing Wang | Shilin He | Irwin King | Michael Lyu | Zhaopeng Tu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large-scale training datasets lie at the core of the recent success of neural machine translation (NMT) models. However, the complex patterns and potential noises in the large-scale data make training NMT models difficult. In this work, we explore to identify the inactive training examples which contribute less to the model performance, and show that the existence of inactive examples depends on the data distribution. We further introduce data rejuvenation to improve the training of NMT models on large-scale datasets by exploiting inactive examples. The proposed framework consists of three phases. First, we train an identification model on the original training data, and use it to distinguish inactive examples and active examples by their sentence-level output probabilities. Then, we train a rejuvenation model on the active examples, which is used to re-label the inactive examples with forward- translation. Finally, the rejuvenated examples and the active examples are combined to train the final NMT model. Experimental results on WMT14 English-German and English-French datasets show that the proposed data rejuvenation consistently and significantly improves performance for several strong NMT models. Extensive analyses reveal that our approach stabilizes and accelerates the training process of NMT models, resulting in final models with better generalization capability.

pdf bib
Exploiting Unsupervised Data for Emotion Recognition in Conversations
Wenxiang Jiao | Michael Lyu | Irwin King
Findings of the Association for Computational Linguistics: EMNLP 2020

Emotion Recognition in Conversations (ERC) aims to predict the emotional state of speakers in conversations, which is essentially a text classification task. Unlike the sentence-level text classification problem, the available supervised data for the ERC task is limited, which potentially prevents the models from playing their maximum effect. In this paper, we propose a novel approach to leverage unsupervised conversation data, which is more accessible. Specifically, we propose the Conversation Completion (ConvCom) task, which attempts to select the correct answer from candidate answers to fill a masked utterance in a conversation. Then, we Pre-train a basic COntext-Dependent Encoder (Pre-CODE) on the ConvCom task. Finally, we fine-tune the Pre-CODE on the datasets of ERC. Experimental results demonstrate that pre-training on unsupervised data achieves significant improvement of performance on the ERC datasets, particularly on the minority emotion classes.

2019

pdf bib
HiGRU: Hierarchical Gated Recurrent Units for Utterance-Level Emotion Recognition
Wenxiang Jiao | Haiqin Yang | Irwin King | Michael R. Lyu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we address three challenges in utterance-level emotion recognition in dialogue systems: (1) the same word can deliver different emotions in different contexts; (2) some emotions are rarely seen in general dialogues; (3) long-range contextual information is hard to be effectively captured. We therefore propose a hierarchical Gated Recurrent Unit (HiGRU) framework with a lower-level GRU to model the word-level inputs and an upper-level GRU to capture the contexts of utterance-level embeddings. Moreover, we promote the framework to two variants, Hi-GRU with individual features fusion (HiGRU-f) and HiGRU with self-attention and features fusion (HiGRU-sf), so that the word/utterance-level individual inputs and the long-range contextual information can be sufficiently utilized. Experiments on three dialogue emotion datasets, IEMOCAP, Friends, and EmotionPush demonstrate that our proposed Hi-GRU models attain at least 8.7%, 7.5%, 6.0% improvement over the state-of-the-art methods on each dataset, respectively. Particularly, by utilizing only the textual feature in IEMOCAP, our HiGRU models gain at least 3.8% improvement over the state-of-the-art conversational memory network (CMN) with the trimodal features of text, video, and audio.