Wenxuan Zhang


pdf bib
Towards Generative Aspect-Based Sentiment Analysis
Wenxuan Zhang | Xin Li | Yang Deng | Lidong Bing | Wai Lam
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Aspect-based sentiment analysis (ABSA) has received increasing attention recently. Most existing work tackles ABSA in a discriminative manner, designing various task-specific classification networks for the prediction. Despite their effectiveness, these methods ignore the rich label semantics in ABSA problems and require extensive task-specific designs. In this paper, we propose to tackle various ABSA tasks in a unified generative framework. Two types of paradigms, namely annotation-style and extraction-style modeling, are designed to enable the training process by formulating each ABSA task as a text generation problem. We conduct experiments on four ABSA tasks across multiple benchmark datasets where our proposed generative approach achieves new state-of-the-art results in almost all cases. This also validates the strong generality of the proposed framework which can be easily adapted to arbitrary ABSA task without additional task-specific model design.


pdf bib
Intra-/Inter-Interaction Network with Latent Interaction Modeling for Multi-turn Response Selection
Yang Deng | Wenxuan Zhang | Wai Lam
Proceedings of the 28th International Conference on Computational Linguistics

Multi-turn response selection has been extensively studied and applied to many real-world applications in recent years. However, current methods typically model the interactions between multi-turn utterances and candidate responses with iterative approaches, which is not practical as the turns of conversations vary. Besides, some latent features, such as user intent and conversation topic, are under-discovered in existing works. In this work, we propose Intra-/Inter-Interaction Network (I3) with latent interaction modeling to comprehensively model multi-level interactions between the utterance context and the response. In specific, we first encode the intra- and inter-utterance interaction with the given response from both individual utterance and the overall utterance context. Then we develop a latent multi-view subspace clustering module to model the latent interaction between the utterance and response. Experimental results show that the proposed method substantially and consistently outperforms existing state-of-the-art methods on three multi-turn response selection benchmark datasets.

pdf bib
AnswerFact: Fact Checking in Product Question Answering
Wenxuan Zhang | Yang Deng | Jing Ma | Wai Lam
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Product-related question answering platforms nowadays are widely employed in many E-commerce sites, providing a convenient way for potential customers to address their concerns during online shopping. However, the misinformation in the answers on those platforms poses unprecedented challenges for users to obtain reliable and truthful product information, which may even cause a commercial loss in E-commerce business. To tackle this issue, we investigate to predict the veracity of answers in this paper and introduce AnswerFact, a large scale fact checking dataset from product question answering forums. Each answer is accompanied by its veracity label and associated evidence sentences, providing a valuable testbed for evidence-based fact checking tasks in QA settings. We further propose a novel neural model with tailored evidence ranking components to handle the concerned answer veracity prediction problem. Extensive experiments are conducted with our proposed model and various existing fact checking methods, showing that our method outperforms all baselines on this task.

pdf bib
Multi-hop Inference for Question-driven Summarization
Yang Deng | Wenxuan Zhang | Wai Lam
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Question-driven summarization has been recently studied as an effective approach to summarizing the source document to produce concise but informative answers for non-factoid questions. In this work, we propose a novel question-driven abstractive summarization method, Multi-hop Selective Generator (MSG), to incorporate multi-hop reasoning into question-driven summarization and, meanwhile, provide justifications for the generated summaries. Specifically, we jointly model the relevance to the question and the interrelation among different sentences via a human-like multi-hop inference module, which captures important sentences for justifying the summarized answer. A gated selective pointer generator network with a multi-view coverage mechanism is designed to integrate diverse information from different perspectives. Experimental results show that the proposed method consistently outperforms state-of-the-art methods on two non-factoid QA datasets, namely WikiHow and PubMedQA.

pdf bib
Answering Product-related Questions with Heterogeneous Information
Wenxuan Zhang | Qian Yu | Wai Lam
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Providing instant response for product-related questions in E-commerce question answering platforms can greatly improve users’ online shopping experience. However, existing product question answering (PQA) methods only consider a single information source such as user reviews and/or require large amounts of labeled data. In this paper, we propose a novel framework to tackle the PQA task via exploiting heterogeneous information including natural language text and attribute-value pairs from two information sources of the concerned product, namely product details and user reviews. A heterogeneous information encoding component is then designed for obtaining unified representations of information with different formats. The sources of the candidate snippets are also incorporated when measuring the question-snippet relevance. Moreover, the framework is trained with a specifically designed weak supervision paradigm making use of available answers in the training phase. Experiments on a real-world dataset show that our proposed framework achieves superior performance over state-of-the-art models.


pdf bib
Exploiting BERT for End-to-End Aspect-based Sentiment Analysis
Xin Li | Lidong Bing | Wenxuan Zhang | Wai Lam
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

In this paper, we investigate the modeling power of contextualized embeddings from pre-trained language models, e.g. BERT, on the E2E-ABSA task. Specifically, we build a series of simple yet insightful neural baselines to deal with E2E-ABSA. The experimental results show that even with a simple linear classification layer, our BERT-based architecture can outperform state-of-the-art works. Besides, we also standardize the comparative study by consistently utilizing a hold-out validation dataset for model selection, which is largely ignored by previous works. Therefore, our work can serve as a BERT-based benchmark for E2E-ABSA.