Knowledge bases (KBs) contain plenty of structured world and commonsense knowledge. As such, they often complement distributional text-based information and facilitate various downstream tasks. Since their manual construction is resource- and time-intensive, recent efforts have tried leveraging large pretrained language models (PLMs) to generate additional monolingual knowledge facts for KBs. However, such methods have not been attempted for building and enriching multilingual KBs. Besides wider application, such multilingual KBs can provide richer combined knowledge than monolingual (e.g., English) KBs. Knowledge expressed in different languages may be complementary and unequally distributed: this implies that the knowledge available in high-resource languages can be transferred to low-resource ones. To achieve this, it is crucial to represent multilingual knowledge in a shared/unified space. To this end, we propose a unified representation model, Prix-LM, for multilingual KB construction and completion. We leverage two types of knowledge, monolingual triples and cross-lingual links, extracted from existing multilingual KBs, and tune a multilingual language encoder XLM-R via a causal language modeling objective. Prix-LM integrates useful multilingual and KB-based factual knowledge into a single model. Experiments on standard entity-related tasks, such as link prediction in multiple languages, cross-lingual entity linking and bilingual lexicon induction, demonstrate its effectiveness, with gains reported over strong task-specialised baselines.
Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the model’s penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resources, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.
In this paper, we propose a variational approach to weakly supervised document-level multi-aspect sentiment classification. Instead of using user-generated ratings or annotations provided by domain experts, we use target-opinion word pairs as “supervision.” These word pairs can be extracted by using dependency parsers and simple rules. Our objective is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment polarity classifier to predict the sentiment polarity of each aspect given a document. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment polarity classifier to the objective via the variational lower bound. We can learn a sentiment polarity classifier by optimizing the lower bound. We show that our method can outperform weakly supervised baselines on TripAdvisor and BeerAdvocate datasets and can be comparable to the state-of-the-art supervised method with hundreds of labels per aspect.
Due to the ability of encoding and mapping semantic information into a high-dimensional latent feature space, neural networks have been successfully used for detecting events to a certain extent. However, such a feature space can be easily contaminated by spurious features inherent in event detection. In this paper, we propose a self-regulated learning approach by utilizing a generative adversarial network to generate spurious features. On the basis, we employ a recurrent network to eliminate the fakes. Detailed experiments on the ACE 2005 and TAC-KBP 2015 corpora show that our proposed method is highly effective and adaptable.
We present a novel method of comparable corpora construction. Unlike the traditional methods which heavily rely on linguistic features, our method only takes image similarity into consid-eration. We use an image-image search engine to obtain similar images, together with the cap-tions in source language and target language. On the basis, we utilize captions of similar imag-es to construct sentence-level bilingual corpora. Experiments on 10,371 target captions show that our method achieves a precision of 0.85 in the top search results.