Wenyue Hua


pdf bib
System 1 + System 2 = Better World: Neural-Symbolic Chain of Logic Reasoning
Wenyue Hua | Yongfeng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Logical reasoning is a challenge for many current NLP neural network models since it requires more than the ability of learning informative representations from data. Inspired by the Dual Process Theory in cognitive science — which proposes that human cognition process involves two stages: an intuitive, unconscious and fast process relying on perception calledSystem 1, and a logical, conscious and slow process performing complex reasoning called System 2 — we leverage neural logic reasoning (System 2) on top of the representation learning models (System 1), which conducts explicit neural-based differentiable logical reasoning on top of the representations learned by the base neural models. Based on experiments on the commonsense knowledge graph completion task, we show that the two-system architecture always improves from its System 1 model alone. Experiments also show that both the rule-driven logical regularizer and the data-driven value regularizer are important and the performance improvement is marginal without the two regularizers, which indicates that learning from both logical prior and training data is important for reasoning tasks.


pdf bib
A Predicate-Function-Argument Annotation of Natural Language for Open-Domain Information eXpression
Mingming Sun | Wenyue Hua | Zoey Liu | Xin Wang | Kangjie Zheng | Ping Li
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing OIE (Open Information Extraction) algorithms are independent of each other such that there exist lots of redundant works; the featured strategies are not reusable and not adaptive to new tasks. This paper proposes a new pipeline to build OIE systems, where an Open-domain Information eXpression (OIX) task is proposed to provide a platform for all OIE strategies. The OIX is an OIE friendly expression of a sentence without information loss. The generation procedure of OIX contains shared works of OIE algorithms so that OIE strategies can be developed on the platform of OIX as inference operations focusing on more critical problems. Based on the same platform of OIX, the OIE strategies are reusable, and people can select a set of strategies to assemble their algorithm for a specific task so that the adaptability may be significantly increased. This paper focuses on the task of OIX and propose a solution – Open Information Annotation (OIA). OIA is a predicate-function-argument annotation for sentences. We label a data set of sentence-OIA pairs and propose a dependency-based rule system to generate OIA annotations from sentences. The evaluation results reveal that learning the OIA from a sentence is a challenge owing to the complexity of natural language sentences, and it is worthy of attracting more attention from the research community.