Wesley Santos


2020

pdf bib
Searching Brazilian Twitter for Signs of Mental Health Issues
Wesley Santos | Amanda Funabashi | Ivandré Paraboni
Proceedings of the Twelfth Language Resources and Evaluation Conference

Depression and related mental health issues are often reflected in the language employed by the individuals who suffer from these conditions and, accordingly, research in Natural Language Processing (NLP) and related fields have developed an increasing number of studies devoted to their recognition in social media text. Some of these studies have also attempted to go beyond recognition by focusing on the early signs of these illnesses, and by analysing the users’ publication history over time to potentially prevent further harm. The two kinds of study are of course overlapping, and often make use of supervised machine learning methods based on annotated corpora. However, as in many other fields, existing resources are largely devoted to English NLP, and there is little support for these studies in under resourced languages. To bridge this gap, in this paper we describe the initial steps towards building a novel resource of this kind - a corpus intended to support both the recognition of mental health issues and the temporal analysis of these illnesses - in the Brazilian Portuguese language, and initial results of a number of experiments in text classification addressing both tasks.

2019

pdf bib
Moral Stance Recognition and Polarity Classification from Twitter and Elicited Text
Wesley Santos | Ivandré Paraboni
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

We introduce a labelled corpus of stances about moral issues for the Brazilian Portuguese language, and present reference results for both the stance recognition and polarity classification tasks. The corpus is built from Twitter and further expanded with data elicited through crowd sourcing and labelled by their own authors. Put together, the corpus and reference results are expected to be taken as a baseline for further studies in the field of stance recognition and polarity classification from text.