Wojciech Kryściński

Also published as: Wojciech Kryscinski


2022

pdf bib
Improving the Faithfulness of Abstractive Summarization via Entity Coverage Control
Haopeng Zhang | Semih Yavuz | Wojciech Kryscinski | Kazuma Hashimoto | Yingbo Zhou
Findings of the Association for Computational Linguistics: NAACL 2022

Abstractive summarization systems leveraging pre-training language models have achieved superior results on benchmark datasets. However, such models have been shown to be more prone to hallucinate facts that are unfaithful to the input context. In this paper, we propose a method to remedy entity-level extrinsic hallucinations with Entity Coverage Control (ECC). We first compute entity coverage precision and prepend the corresponding control code for each training example, which implicitly guides the model to recognize faithfulness contents in the training phase. We further extend our method via intermediate fine-tuning on large but noisy data extracted from Wikipedia to unlock zero-shot summarization. We show that the proposed method leads to more faithful and salient abstractive summarization in supervised fine-tuning and zero-shot settings according to our experimental results on three benchmark datasets XSum, Pubmed, and SAMSum of very different domains and styles.

pdf bib
Exploring Neural Models for Query-Focused Summarization
Jesse Vig | Alexander Fabbri | Wojciech Kryscinski | Chien-Sheng Wu | Wenhao Liu
Findings of the Association for Computational Linguistics: NAACL 2022

Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization. While recently released datasets, such as QMSum or AQuaMuSe, facilitate research efforts in QFS, the field lacks a comprehensive study of the broad space of applicable modeling methods. In this paper we conduct a systematic exploration of neural approaches to QFS, considering two general classes of methods: two-stage extractive-abstractive solutions and end-to-end models. Within those categories, we investigate existing models and explore strategies for transfer learning. We also present two modeling extensions that achieve state-of-the-art performance on the QMSum dataset, up to a margin of 3.38 ROUGE-1, 3.72 ROUGE2, and 3.28 ROUGE-L when combined with transfer learning strategies. Results from human evaluation suggest that the best models produce more comprehensive and factually consistent summaries compared to a baseline model. Code and checkpoints are made publicly available: https://github.com/salesforce/query-focused-sum.

pdf bib
CREATIVESUMM: Shared Task on Automatic Summarization for Creative Writing
Divyansh Agarwal | Alexander R. Fabbri | Simeng Han | Wojciech Kryscinski | Faisal Ladhak | Bryan Li | Kathleen McKeown | Dragomir Radev | Tianyi Zhang | Sam Wiseman
Proceedings of The Workshop on Automatic Summarization for Creative Writing

This paper introduces the shared task of summrizing documents in several creative domains, namely literary texts, movie scripts, and television scripts. Summarizing these creative documents requires making complex literary interpretations, as well as understanding non-trivial temporal dependencies in texts containing varied styles of plot development and narrative structure. This poses unique challenges and is yet underexplored for text summarization systems. In this shared task, we introduce four sub-tasks and their corresponding datasets, focusing on summarizing books, movie scripts, primetime television scripts, and daytime soap opera scripts. We detail the process of curating these datasets for the task, as well as the metrics used for the evaluation of the submissions. As part of the CREATIVESUMM workshop at COLING 2022, the shared task attracted 18 submissions in total. We discuss the submissions and the baselines for each sub-task in this paper, along with directions for facilitating future work.

pdf bib
FeTaQA: Free-form Table Question Answering
Linyong Nan | Chiachun Hsieh | Ziming Mao | Xi Victoria Lin | Neha Verma | Rui Zhang | Wojciech Kryściński | Hailey Schoelkopf | Riley Kong | Xiangru Tang | Mutethia Mutuma | Ben Rosand | Isabel Trindade | Renusree Bandaru | Jacob Cunningham | Caiming Xiong | Dragomir Radev | Dragomir Radev
Transactions of the Association for Computational Linguistics, Volume 10

Existing table question answering datasets contain abundant factual questions that primarily evaluate a QA system’s comprehension of query and tabular data. However, restricted by their short-form answers, these datasets fail to include question–answer interactions that represent more advanced and naturally occurring information needs: questions that ask for reasoning and integration of information pieces retrieved from a structured knowledge source. To complement the existing datasets and to reveal the challenging nature of the table-based question answering task, we introduce FeTaQA, a new dataset with 10K Wikipedia-based table, question, free-form answer, supporting table cells pairs. FeTaQA is collected from noteworthy descriptions of Wikipedia tables that contain information people tend to seek; generation of these descriptions requires advanced processing that humans perform on a daily basis: Understand the question and table, retrieve, integrate, infer, and conduct text planning and surface realization to generate an answer. We provide two benchmark methods for the proposed task: a pipeline method based on semantic parsing-based QA systems and an end-to-end method based on large pretrained text generation models, and show that FeTaQA poses a challenge for both methods.

2021

pdf bib
SummEval: Re-evaluating Summarization Evaluation
Alexander R. Fabbri | Wojciech Kryściński | Bryan McCann | Caiming Xiong | Richard Socher | Dragomir Radev
Transactions of the Association for Computational Linguistics, Volume 9

Abstract The scarcity of comprehensive up-to-date studies on evaluation metrics for text summarization and the lack of consensus regarding evaluation protocols continue to inhibit progress. We address the existing shortcomings of summarization evaluation methods along five dimensions: 1) we re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion using neural summarization model outputs along with expert and crowd-sourced human annotations; 2) we consistently benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics; 3) we assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset and share it in a unified format; 4) we implement and share a toolkit that provides an extensible and unified API for evaluating summarization models across a broad range of automatic metrics; and 5) we assemble and share the largest and most diverse, in terms of model types, collection of human judgments of model-generated summaries on the CNN/Daily Mail dataset annotated by both expert judges and crowd-source workers. We hope that this work will help promote a more complete evaluation protocol for text summarization as well as advance research in developing evaluation metrics that better correlate with human judgments.

pdf bib
SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
Jesse Vig | Wojciech Kryscinski | Karan Goel | Nazneen Rajani
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SummVis, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness. The tool together with several pre-computed model outputs is available at https://summvis.com.

2020

pdf bib
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kryscinski | Bryan McCann | Caiming Xiong | Richard Socher
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The most common metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and generated summaries. Training data is generated by applying a series of rule-based transformations to the sentences of source documents.The factual consistency model is then trained jointly for three tasks: 1) predict whether each summary sentence is factually consistent or not, 2) in either case, extract a span in the source document to support this consistency prediction, 3) for each summary sentence that is deemed inconsistent, extract the inconsistent span from it. Transferring this model to summaries generated by several neural models reveals that this highly scalable approach outperforms previous models, including those trained with strong supervision using datasets from related domains, such as natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency. We also release a manually annotated dataset for factual consistency verification, code for training data generation, and trained model weights at https://github.com/salesforce/factCC.

pdf bib
Sketch-Fill-A-R: A Persona-Grounded Chit-Chat Generation Framework
Michael Shum | Stephan Zheng | Wojciech Kryscinski | Caiming Xiong | Richard Socher
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI

Human-like chit-chat conversation requires agents to generate responses that are fluent, engaging and consistent. We propose Sketch- Fill-A-R, a framework that uses a persona-memory to generate chit-chat responses in three phases. First, it generates dynamic sketch responses with open slots. Second, it generates candidate responses by filling slots with parts of its stored persona traits. Lastly, it ranks and selects the final response via a language model score. Sketch-Fill-A-R outperforms a state-of-the-art baseline both quantitatively (10-point lower perplexity) and qualitatively (preferred by 55% in head-to-head single-turn studies and 20% higher in consistency in multi-turn user studies) on the Persona-Chat dataset. Finally, we extensively analyze Sketch-Fill-A-R’s responses and human feedback, and show it is more consistent and engaging by using more relevant responses and questions.

2019

pdf bib
Neural Text Summarization: A Critical Evaluation
Wojciech Kryscinski | Nitish Shirish Keskar | Bryan McCann | Caiming Xiong | Richard Socher
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text summarization aims at compressing long documents into a shorter form that conveys the most important parts of the original document. Despite increased interest in the community and notable research effort, progress on benchmark datasets has stagnated. We critically evaluate key ingredients of the current research setup: datasets, evaluation metrics, and models, and highlight three primary shortcomings: 1) automatically collected datasets leave the task underconstrained and may contain noise detrimental to training and evaluation, 2) current evaluation protocol is weakly correlated with human judgment and does not account for important characteristics such as factual correctness, 3) models overfit to layout biases of current datasets and offer limited diversity in their outputs.

2018

pdf bib
Improving Abstraction in Text Summarization
Wojciech Kryściński | Romain Paulus | Caiming Xiong | Richard Socher
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Abstractive text summarization aims to shorten long text documents into a human readable form that contains the most important facts from the original document. However, the level of actual abstraction as measured by novel phrases that do not appear in the source document remains low in existing approaches. We propose two techniques to improve the level of abstraction of generated summaries. First, we decompose the decoder into a contextual network that retrieves relevant parts of the source document, and a pretrained language model that incorporates prior knowledge about language generation. Second, we propose a novelty metric that is optimized directly through policy learning to encourage the generation of novel phrases. Our model achieves results comparable to state-of-the-art models, as determined by ROUGE scores and human evaluations, while achieving a significantly higher level of abstraction as measured by n-gram overlap with the source document.