Wafa Aissa


2025

pdf bib
Modélisation de la lisibilité en français pour les personnes en situation d’illettrisme
Wafa Aissa | Thibault Bañeras-Roux | Elodie Vanzeveren | Lingyun Gao | Alice Pintard | Rodrigo Wilkens | Thomas François
Actes des 32ème Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : articles scientifiques originaux

Nous présentons une nouvelle formule de lisibilité en français spécifiquement conçue pour les personnes en situation d’illettrisme. À cette fin, nous avons construit un corpus de 461 textes annotés selon une échelle de difficulté spécialisée à ce public. Dans un second temps, nous avons systématiquement comparé les principales approches en lisibilité, incluant l’apprentissage automatique reposant sur des variables linguistiques, le fine-tuning de CamemBERT, une approche hybride combinant CamemBERT et des variables linguistiques et des modèles de langue génératifs (LLMs). Une analyse approfondie de ces modèles et de leurs performances est menée afin d’évaluer leur applicabilité dans des contextes réels.

2018

pdf bib
A Reinforcement Learning-driven Translation Model for Search-Oriented Conversational Systems
Wafa Aissa | Laure Soulier | Ludovic Denoyer
Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI

Search-oriented conversational systems rely on information needs expressed in natural language (NL). We focus here on the understanding of NL expressions for building keyword-based queries. We propose a reinforcement-learning-driven translation model framework able to 1) learn the translation from NL expressions to queries in a supervised way, and, 2) to overcome the lack of large-scale dataset by framing the translation model as a word selection approach and injecting relevance feedback as a reward in the learning process. Experiments are carried out on two TREC datasets. We outline the effectiveness of our approach.