Wei Ai
May refer to several people
Other people with similar names: Wei Ai
2025
Dynamic Graph Neural ODE Network for Multi-modal Emotion Recognition in Conversation
Yuntao Shou
|
Tao Meng
|
Wei Ai
|
Keqin Li
Proceedings of the 31st International Conference on Computational Linguistics
Multimodal emotion recognition in conversation (MERC) refers to identifying and classifying human emotional states by combining data from multiple different modalities (e.g., audio, images, text, video, etc.). Specifically, human emotional expressions are often complex and diverse, and these complex emotional expressions can be captured and understood more comprehensively through the fusion of multimodal information. Most existing graph-based multimodal emotion recognition methods can only use shallow GCNs to extract emotion features and fail to capture the temporal dependencies caused by dynamic changes in emotions. To address the above problems, we propose a Dynamic Graph Neural Ordinary Differential Equation Network (DGODE) for multimodal emotion recognition in conversation, which combines the dynamic changes of emotions to capture the temporal dependency of speakers’ emotions. Technically, the key idea of DGODE is to use the graph ODE evolution network to characterize the continuous dynamics of node representations over time and capture temporal dependencies. Extensive experiments on two publicly available multimodal emotion recognition datasets demonstrate that the proposed DGODE model has superior performance compared to various baselines. Furthermore, the proposed DGODE can also alleviate the over-smoothing problem, thereby enabling the construction of a deep GCN network.
DISCO Balances the Scales: Adaptive Domain- and Difficulty-Aware Reinforcement Learning on Imbalanced Data
Yuhang Zhou
|
Jing Zhu
|
Shengyi Qian
|
Zhuokai Zhao
|
Xiyao Wang
|
Xiaoyu Liu
|
Ming Li
|
Paiheng Xu
|
Wei Ai
|
Furong Huang
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Language Models (LLMs) are increasingly aligned with human preferences through Reinforcement Learning from Human Feedback (RLHF). Among RLHF methods, Group Relative Policy Optimization (GRPO) has gained attention for its simplicity and strong performance, notably eliminating the need for a learned value function. However, GRPO implicitly assumes a balanced domain distribution and uniform semantic alignment across groups—assumptions that rarely hold in real-world datasets. When applied to multi-domain, imbalanced data, GRPO disproportionately optimizes for dominant domains, neglecting underrepresented ones and resulting in poor generalization and fairness. We propose Domain-Informed Self-Consistency Policy Optimization (DISCO), a principled extension to GRPO that addresses inter-group imbalance with two key innovations. Domain-aware reward scaling counteracts frequency bias by reweighting optimization based on domain prevalence. Difficulty-aware reward scaling leverages prompt-level self-consistency to identify and prioritize uncertain prompts that offer greater learning value. Together, these strategies promote more equitable and effective policy learning across domains. Extensive experiments across multiple LLMs and skewed training distributions show that DISCO improves generalization, outperforms existing GRPO variants by 5% on Qwen3 models, and sets new state-of-the-art results on multi-domain alignment benchmarks.