2024
pdf
bib
abs
MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter
Jitai Hao
|
Weiwei Sun
|
Xin Xin
|
Qi Meng
|
Zhumin Chen
|
Pengjie Ren
|
Zhaochun Ren
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Parameter-Efficient Fine-tuning (PEFT) facilitates the fine-tuning of Large Language Models (LLMs) under limited resources. However, the fine-tuning performance with PEFT on complex, knowledge-intensive tasks is limited due to the constrained model capacity, which originates from the limited number of additional trainable parameters. To overcome this limitation, we introduce a novel mechanism that fine-tunes LLMs with adapters of larger size yet memory-efficient. This is achieved by leveraging the inherent activation sparsity in the Feed-Forward Networks (FFNs) of LLMs and utilizing the larger capacity of Central Processing Unit (CPU) memory compared to Graphics Processing Unit (GPU). We store and update the parameters of larger adapters on the CPU. Moreover, we employ a Mixture of Experts (MoE)-like architecture to mitigate unnecessary CPU computations and reduce the communication volume between the GPU and CPU. This is particularly beneficial over the limited bandwidth of PCI Express (PCIe). Our method can achieve fine-tuning results comparable to those obtained with larger memory capacities, even when operating under more limited resources such as a 24GB memory single GPU setup, with acceptable loss in training efficiency. Our codes are available at https://github.com/CURRENTF/MEFT.
pdf
bib
abs
Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering
Zhengliang Shi
|
Shuo Zhang
|
Weiwei Sun
|
Shen Gao
|
Pengjie Ren
|
Zhumin Chen
|
Zhaochun Ren
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multi-Hop Question Answering (MHQA) task presents a significant challenge for large language models (LLMs) due to the intensive knowledge required. Current solutions, like Retrieval-Augmented Generation, typically retrieve potential documents from an external corpus to read an answer. However, the performance of this retrieve-then-read paradigm is constrained by the retriever and the inevitable noise in the retrieved documents. To mitigate these challenges, we introduce a novel generate-then-ground (GenGround) framework, synergizing the parametric knowledge of LLMs and external documents to solve a multi-hop question. GenGround empowers LLMs to alternate two phases until the final answer is derived: (1) formulate a simpler, single-hop question and directly generate the answer; (2) ground the question-answer pair into retrieved documents, amending any wrong predictions in the answer. We also propose an instructional grounding distillation method to generalize our method into smaller models. Extensive experiments conducted on four datasets illustrate the superiority of our method. To further facilitate future research, we have collected a dataset that traces the reasoning process.
pdf
bib
abs
MAIR: A Massive Benchmark for Evaluating Instructed Retrieval
Weiwei Sun
|
Zhengliang Shi
|
Wu Jiu Long
|
Lingyong Yan
|
Xinyu Ma
|
Yiding Liu
|
Min Cao
|
Dawei Yin
|
Zhaochun Ren
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent information retrieval (IR) models are pre-trained and instruction-tuned on massive datasets and tasks, enabling them to perform well on a wide range of tasks and potentially generalize to unseen tasks with instructions. However, existing IR benchmarks focus on a limited scope of tasks, making them insufficient for evaluating the latest IR models. In this paper, we propose MAIR (Massive Instructed Retrieval Benchmark), a heterogeneous IR benchmark that includes 126 distinct IR tasks across 6 domains, collected from existing datasets. We benchmark state-of-the-art instruction-tuned text embedding models and re-ranking models. Our experiments reveal that instruction-tuned models generally achieve superior performance compared to non-instruction-tuned models on MAIR Additionally, our results suggest that current instruction-tuned text embedding models and re-ranking models still lack effectiveness in specific long-tail tasks. MAIR is publicly available at https://github.com/sunnweiwei/Mair.
pdf
bib
abs
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Tianjie Ju
|
Weiwei Sun
|
Wei Du
|
Xinwei Yuan
|
Zhaochun Ren
|
Gongshen Liu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ V-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
pdf
bib
abs
Improving the Robustness of Large Language Models via Consistency Alignment
Yukun Zhao
|
Lingyong Yan
|
Weiwei Sun
|
Guoliang Xing
|
Shuaiqiang Wang
|
Chong Meng
|
Zhicong Cheng
|
Zhaochun Ren
|
Dawei Yin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Large language models (LLMs) have shown tremendous success in following user instructions and generating helpful responses. Nevertheless, their robustness is still far from optimal, as they may generate significantly inconsistent responses due to minor changes in the verbalized instructions. Recent literature has explored this inconsistency issue, highlighting the importance of continued improvement in the robustness of response generation. However, systematic analysis and solutions are still lacking. In this paper, we quantitatively define the inconsistency problem and propose a two-stage training framework consisting of instruction-augmented supervised fine-tuning and consistency alignment training. The first stage helps a model generalize on following instructions via similar instruction augmentations. In the second stage, we improve the diversity and help the model understand which responses are more aligned with human expectations by differentiating subtle differences in similar responses. The training process is accomplished by self-rewards inferred from the trained model at the first stage without referring to external human preference resources. We conduct extensive experiments on recent publicly available LLMs on instruction-following tasks and demonstrate the effectiveness of our training framework.
pdf
bib
abs
Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method
Yukun Zhao
|
Lingyong Yan
|
Weiwei Sun
|
Guoliang Xing
|
Chong Meng
|
Shuaiqiang Wang
|
Zhicong Cheng
|
Zhaochun Ren
|
Dawei Yin
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large Language Models (LLMs) have shown great potential in Natural Language Processing (NLP) tasks.However, recent literature reveals that LLMs hallucinate intermittently, which impedes their reliability for further utilization. In this paper, we propose a novel self-detection method to detect which questions an LLM does not know.Our proposal is empirical and applicable for continually upgrading LLMs compared with state-of-the-art methods. Specifically, we examine the divergence of the LLM’s behaviors on different verbalizations for a question and examine the atypicality of the verbalized input. We combine the two components to identify whether the model generates a non-factual response to the question. The above components can be accomplished by utilizing the LLM itself without referring to any other external resources. We conduct comprehensive experiments and demonstrate the effectiveness of our method for recently released LLMs involving Llama 2, Vicuna, ChatGPT, and GPT-4 across factoid question-answering, arithmetic reasoning, and commonsense reasoning tasks.
2023
pdf
bib
abs
Answering Ambiguous Questions via Iterative Prompting
Weiwei Sun
|
Hengyi Cai
|
Hongshen Chen
|
Pengjie Ren
|
Zhumin Chen
|
Maarten de Rijke
|
Zhaochun Ren
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In open-domain question answering, due to the ambiguity of questions, multiple plausible answers may exist. To provide feasible answers to an ambiguous question,one approach is to directly predict all valid answers, but this can struggle with balancing relevance and diversity. An alternative is to gather candidate answers and aggregate them, but this method can be computationally costly and may neglect dependencies among answers. In this paper, we present AmbigPrompt to address the imperfections of existing approaches to answering ambiguous questions. Specifically, we integrate an answering model with a prompting model in an iterative manner. The prompting model adaptively tracks the reading process and progressively triggers the answering model to compose distinct and relevant answers. Additionally, we develop a task-specific post-pretraining approach for both the answering model and the prompting model, which greatly improves the performance of our framework. Empirical studies on two commonly-used open benchmarks show that AmbigPrompt achieves state-of-the-art or competitive results while using less memory and having a lower inference latency than competing approaches. Additionally, AmbigPrompt also performs well in low-resource settings.
pdf
bib
abs
RADE: Reference-Assisted Dialogue Evaluation for Open-Domain Dialogue
Zhengliang Shi
|
Weiwei Sun
|
Shuo Zhang
|
Zhen Zhang
|
Pengjie Ren
|
Zhaochun Ren
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Evaluating open-domain dialogue systems is challenging for reasons such as the one-to-many problem, i.e., many appropriate responses other than just the golden response. As of now, automatic evaluation methods need better consistency with humans, while reliable human evaluation can be time- and cost-intensive. To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem. Specifically, RADE explicitly compares reference and the candidate response to predict their overall scores. Moreover, an auxiliary response generation task enhances prediction via a shared encoder. To support RADE, we extend three datasets with additional rated responses other than just a golden response by human annotation. Experiments on our three datasets and two existing benchmarks demonstrate the effectiveness of our method, where Pearson, Spearman, and Kendall correlations with human evaluation outperform state-of-the-art baselines.
pdf
bib
abs
Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents
Weiwei Sun
|
Lingyong Yan
|
Xinyu Ma
|
Shuaiqiang Wang
|
Pengjie Ren
|
Zhumin Chen
|
Dawei Yin
|
Zhaochun Ren
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks, including search engines. However, existing work utilizes the generative ability of LLMs for Information Retrieval (IR) rather than direct passage ranking. The discrepancy between the pre-training objectives of LLMs and the ranking objective poses another challenge. In this paper, we first investigate generative LLMs such as ChatGPT and GPT-4 for relevance ranking in IR. Surprisingly, our experiments reveal that properly instructed LLMs can deliver competitive, even superior results to state-of-the-art supervised methods on popular IR benchmarks. Furthermore, to address concerns about data contamination of LLMs, we collect a new test set called NovelEval, based on the latest knowledge and aiming to verify the model’s ability to rank unknown knowledge. Finally, to improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models using a permutation distillation scheme. Our evaluation results turn out that a distilled 440M model outperforms a 3B supervised model on the BEIR benchmark. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT.
pdf
bib
abs
Generative Knowledge Selection for Knowledge-Grounded Dialogues
Weiwei Sun
|
Pengjie Ren
|
Zhaochun Ren
Findings of the Association for Computational Linguistics: EACL 2023
Knowledge selection is the key in knowledge-grounded dialogues (KGD), which aims to select an appropriate knowledge snippet to be used in the utterance based on dialogue history. Previous studies mainly employ the classification approach to classify each candidate snippet as “relevant” or “irrelevant” independently. However, such approaches neglect the interactions between snippets, leading to difficulties in inferring the meaning of snippets. Moreover, they lack modeling of the discourse structure of dialogue-knowledge interactions. We propose a simple yet effective generative approach for knowledge selection, called GenKS. GenKS learns to select snippets by generating their identifiers with a sequence-to-sequence model. GenKS therefore captures intra-knowledge interaction inherently through attention mechanisms. Meanwhile, we devise a hyperlink mechanism to model the dialogue-knowledge interactions explicitly. We conduct experiments on three benchmark datasets, and verify GenKS achieves the best results on both knowledge selection and response generation.
pdf
bib
abs
DiQAD: A Benchmark Dataset for Open-domain Dialogue Quality Assessment
Yukun Zhao
|
Lingyong Yan
|
Weiwei Sun
|
Chong Meng
|
Shuaiqiang Wang
|
Zhicong Cheng
|
Zhaochun Ren
|
Dawei Yin
Findings of the Association for Computational Linguistics: EMNLP 2023
Dialogue assessment plays a critical role in the development of open-domain dialogue systems. Existing work are uncapable of providing an end-to-end and human-epistemic assessment dataset, while they only provide sub-metrics like coherence or the dialogues are conversed between annotators far from real user settings. In this paper, we release a large-scale dialogue quality assessment dataset (DiQAD), for automatically assessing open-domain dialogue quality. Specifically, we (1) establish the assessment criteria based on the dimensions conforming to human judgements on dialogue qualities, and (2) annotate large-scale dialogues that conversed between real users based on these annotation criteria, which contains around 100,000 dialogues. We conduct several experiments and report the performances of the baselines as the benchmark on DiQAD. The dataset is openly accessible at
https://github.com/yukunZhao/Dataset_Dialogue_quality_evaluation.