Recent studies have shown that Contrastive Language-Image Pre-training (CLIP) models are threatened by targeted data poisoning and backdoor attacks due to massive training image-caption pairs crawled from the Internet. Previous defense methods correct poisoned image-caption pairs by matching a new caption for each image. However, the matching process solely relies on the global representations of images and captions, overlooking fine-grained features of visual and textual features. It may introduce incorrect image-caption pairs and detriment the CLIP pre-training. To address their limitations, we propose an Optimal Transport-based framework to reconstruct the image-caption pairs, named OTCCLIP. We involve a new optimal transport-based distance measure between fine-grained visual and textual feature sets and re-assign new captions based on the proposed optimal transport distance. Additionally, to further reduce the negative impact of mismatched pairs, we encourage the inter- and intra-modality fine-grained alignment by employing optimal transport-based objective functions. Our experiments demonstrate that OTCCLIP can successfully decrease the attack success rates of poisoning attacks to 0% in most cases. Also, compared to previous methods, OTCCLIPsignificantly improves CLIP’s zero-shot and linear probing performance trained on poisoned datasets.
Model merging is a widespread technology in large language models (LLMs) that integrates multiple task-specific LLMs into a unified one, enabling the merged model to inherit the specialized capabilities of these LLMs. Most task-specific LLMs are sourced from open-source communities and have not undergone rigorous auditing, potentially imposing risks in model merging. This paper highlights an overlooked privacy risk: *an unsafe model could compromise the privacy of other LLMs involved in the model merging*. Specifically, we propose *PhiMM*, a privacy attack approach that trains a phishing model capable of stealing privacy using a crafted privacy phishing instruction dataset. Furthermore, we introduce a novel model cloaking method that mimics a specialized capability to conceal attack intent, luring users into merging the phishing model. Once victims merge the phishing model, the attacker can extract personally identifiable information (PII) or infer membership information (MI) by querying the merged model with the phishing instruction. Experimental results show that merging a phishing model increases the risk of privacy breaches. Compared to the results before merging, PII leakage increased by 3.9% and MI leakage increased by 17.4% on average. We release the code of *PhiMM* through an anonymous link.
Large Language Models (LLMs) pose significant privacy risks, potentially leaking training data due to implicit memorization. Existing privacy attacks primarily focus on membership inference attacks (MIAs) or data extraction attacks, but reconstructing specific personally identifiable information (PII) in LLMs’ training data remains challenging. In this paper, we propose (Recollect and Rank), a novel two-step privacy stealing attack that enables attackers to reconstruct PII entities from scrubbed training data where the PII entities have been masked. In the first stage, we introduce a prompt paradigm named recollection, which instructs the LLM to repeat a masked text but fill in masks. Then we can use PII identifiers to extract recollected PII candidates. In the second stage, we design a new criterion to score each PII candidate and rank them. Motivated by membership inference, we leverage the reference model as a calibration to our criterion. Experiments across three popular PII datasets demonstrate that the achieves better PII identification performance than baselines. These results highlight the vulnerability of LLMs to PII leakage even when training data has been scrubbed. We release our code and datasets at GitHub.