Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that exploits the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis shows that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND consistently outperforms state-of-the-art speculative decoding methods across diverse inference patterns, including single-trajectory decoding, batch decoding, and test-time tree search. As a model-free approach, STAND can be applied to any existing language model without additional training, making it a powerful plug-and-play solution for accelerating language model reasoning.
Speculative decoding has emerged as a promising approach to accelerating large language model (LLM) generation using a fast drafter while maintaining alignment with the target model’s distribution. However, existing approaches face a trade-off: external drafters offer flexibility but can suffer from slower drafting, while self-speculation methods use drafters tailored to the target model but require re-training. In this paper, we introduce novel drafters based on Mamba, a state-of-the-art state space model (SSM), as a solution that combines the best aspects of both approaches. By leveraging the linear structure of SSMs, our approach avoids the quadratic complexity inherent in traditional Transformer-based methods, enabling faster drafting and lower memory usage while maintaining the flexibility to work across different target models. We further enhance efficiency with a novel test-time tree search algorithm for generating high-quality draft candidates. Our empirical evaluation demonstrates that Mamba-based drafters not only outperform existing external drafting methods but are also comparable to state-of-the-art self-speculation approaches while using less memory and maintaining their cross-model adaptability.
Recent large language models have shown promising capabilities in long-form reasoning, following structured chains of thought before arriving at a final answer. However, we observe that these reasoning paths tend to include substantial redundancy; analyzing attention patterns reveals that attention scores are widely scattered, particularly incorrect answers exhibit greater attention sparsity. In this paper, we demonstrate that deliberately removing this redundancy in the reasoning process significantly improves the performance through clear thinking (i.e., removing distraction). Specifically, we systematically identify such redundancy by measuring token-level attention scores to a special end-of-thinking token, which is appended to an explicit instruction inserted to conclude each intermediate reasoning step. Furthermore, we propose structure-aware pruning that prioritizes removing tokens in low-contributing reasoning chunks over individual tokens. After evicting redundant tokens, we remove the injected end-of-thinking instruction, then resume the reasoning generation. We demonstrate that our method significantly improves the over all accuracy across reasoning-intensive benchmarks without any training involved. In particular, our method shows strong performance on challenging mathematics competition benchmarks such as AIME and AMC, where reasoning redundancy is more prevalent.