Xi Wang


pdf bib
Characteristic AI Agents via Large Language Models
Xi Wang | Hongliang Dai | Shen Gao | Piji Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The advancement of Large Language Models (LLMs) has led to significant enhancements in the performance of chatbot systems. Many researchers have dedicated their efforts to the development of bringing characteristics to chatbots. While there have been commercial products for developing role-driven chatbots using LLMs, it is worth noting that academic research in this area remains relatively scarce. Our research focuses on investigating the performance of LLMs in constructing Characteristic AI Agents by simulating real-life individuals across different settings. Current investigations have primarily focused on act on roles with simple profiles. In response to this research gap, we create a benchmark for the characteristic AI agents task, including dataset, techniques, and evaluation metrics. A dataset called “Character100” is built for this benchmark, comprising the most-visited people on Wikipedia for language models to role-play. With the constructed dataset, we conduct comprehensive assessment of LLMs across various settings. In addition, we devise a set of automatic metrics for quantitative performance evaluation. The experimental results underscore the potential directions for further improvement in the capabilities of LLMs in constructing characteristic AI agents. The benchmark is available at https://github.com/nuaa-nlp/Character100.

pdf bib
Clarifying the Path to User Satisfaction: An Investigation into Clarification Usefulness
Hossein A. Rahmani | Xi Wang | Mohammad Aliannejadi | Mohammadmehdi Naghiaei | Emine Yilmaz
Findings of the Association for Computational Linguistics: EACL 2024

Clarifying questions are an integral component of modern information retrieval systems, directly impacting user satisfaction and overall system performance. Poorly formulated questions can lead to user frustration and confusion, negatively affecting the system’s performance. This research addresses the urgent need to identify and leverage key features that contribute to the classification of clarifying questions, enhancing user satisfaction. To gain deeper insights into how different features influence user satisfaction, we conduct a comprehensive analysis, considering a broad spectrum of lexical, semantic, and statistical features, such as question length and sentiment polarity. Our empirical results provide three main insights into the qualities of effective query clarification: (1) specific questions are more effective than generic ones; (2) the subjectivity and emotional tone of a question play a role; and (3) shorter and more ambiguous queries benefit significantly from clarification. Based on these insights, we implement feature-integrated user satisfaction prediction using various classifiers, both traditional and neural-based, including random forest, BERT, and large language models. Our experiments show a consistent and significant improvement, particularly in traditional classifiers, with a minimum performance boost of 45%. This study presents invaluable guidelines for refining the formulation of clarifying questions and enhancing both user satisfaction and system performance.


pdf bib
Improving Conversational Recommendation Systems via Bias Analysis and Language-Model-Enhanced Data Augmentation
Xi Wang | Hossein Rahmani | Jiqun Liu | Emine Yilmaz
Findings of the Association for Computational Linguistics: EMNLP 2023

Conversational Recommendation System (CRS) is a rapidly growing research area that has gained significant attention alongside advancements in language modelling techniques. However, the current state of conversational recommendation faces numerous challenges due to its relative novelty and limited existing contributions. In this study, we delve into benchmark datasets for developing CRS models and address potential biases arising from the feedback loop inherent in multi-turn interactions, including selection bias and multiple popularity bias variants. Drawing inspiration from the success of generative data via using language models and data augmentation techniques, we present two novel strategies, ‘Once-Aug’ and ‘PopNudge’, to enhance model performance while mitigating biases. Through extensive experiments on ReDial and TG-ReDial benchmark datasets, we show a consistent improvement of CRS techniques with our data augmentation approaches and offer additional insights on addressing multiple newly formulated biases.

pdf bib
A Survey on Asking Clarification Questions Datasets in Conversational Systems
Hossein A. Rahmani | Xi Wang | Yue Feng | Qiang Zhang | Emine Yilmaz | Aldo Lipani
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The ability to understand a user’s underlying needs is critical for conversational systems, especially with limited input from users in a conversation. Thus, in such a domain, Asking Clarification Questions (ACQs) to reveal users’ true intent from their queries or utterances arise as an essential task. However, it is noticeable that a key limitation of the existing ACQs studies is their incomparability, from inconsistent use of data, distinct experimental setups and evaluation strategies. Therefore, in this paper, to assist the development of ACQs techniques, we comprehensively analyse the current ACQs research status, which offers a detailed comparison of publicly available datasets, and discusses the applied evaluation metrics, joined with benchmarks for multiple ACQs-related tasks. In particular, given a thorough analysis of the ACQs task, we discuss a number of corresponding research directions for the investigation of ACQs as well as the development of conversational systems.


pdf bib
SMASH: Improving SMAll Language Models’ Few-SHot Ability with Prompt-Based Distillation
Yueqian Wang | Chang Liu | Kai Chen | Xi Wang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

Large-scale language models coupled with prompts have shown remarkable performance on few-shot learning. However, through systematic experiments, we find that the few-shot performance of small language models is poor, and using prompts on them brings fewer improvements than on larger ones. In this paper, we propose SMASH, an approach to improve SMAll language models’ few-SHot ability by training on intermediate tasks before prompt-based fine-tuning on downstream tasks. We design intermediate tasks for sentence-pair tasks and sentiment classification tasks by creating training examples with prompt templates similar to downstream tasks using sentences sampled from a large-scale unsupervised corpus, and apply knowledge distillation to distill from outputs of larger pre-trained models as the training objective. We conduct extensive experiments and show that SMASH can make a 6-layer DistilRoBRETa-base achieve comparable performance on few-shot datasets with a 12-layer RoBERTa-base at a low cost.

pdf bib
MetaASSIST: Robust Dialogue State Tracking with Meta Learning
Fanghua Ye | Xi Wang | Jie Huang | Shenghui Li | Samuel Stern | Emine Yilmaz
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Existing dialogue datasets contain lots of noise in their state annotations. Such noise can hurt model training and ultimately lead to poor generalization performance. A general framework named ASSIST has recently been proposed to train robust dialogue state tracking (DST) models. It introduces an auxiliary model to generate pseudo labels for the noisy training set. These pseudo labels are combined with vanilla labels by a common fixed weighting parameter to train the primary DST model. Notwithstanding the improvements of ASSIST on DST, tuning the weighting parameter is challenging. Moreover, a single parameter shared by all slots and all instances may be suboptimal. To overcome these limitations, we propose a meta learning-based framework MetaASSIST to adaptively learn the weighting parameter. Specifically, we propose three schemes with varying degrees of flexibility, ranging from slot-wise to both slot-wise and instance-wise, to convert the weighting parameter into learnable functions. These functions are trained in a meta-learning manner by taking the validation set as meta data. Experimental results demonstrate that all three schemes can achieve competitive performance. Most impressively, we achieve a state-of-the-art joint goal accuracy of 80.10% on MultiWOZ 2.4.


pdf bib
QuadrupletBERT: An Efficient Model For Embedding-Based Large-Scale Retrieval
Peiyang Liu | Sen Wang | Xi Wang | Wei Ye | Shikun Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The embedding-based large-scale query-document retrieval problem is a hot topic in the information retrieval (IR) field. Considering that pre-trained language models like BERT have achieved great success in a wide variety of NLP tasks, we present a QuadrupletBERT model for effective and efficient retrieval in this paper. Unlike most existing BERT-style retrieval models, which only focus on the ranking phase in retrieval systems, our model makes considerable improvements to the retrieval phase and leverages the distances between simple negative and hard negative instances to obtaining better embeddings. Experimental results demonstrate that our QuadrupletBERT achieves state-of-the-art results in embedding-based large-scale retrieval tasks.

pdf bib
Improving Embedding-based Large-scale Retrieval via Label Enhancement
Peiyang Liu | Xi Wang | Sen Wang | Wei Ye | Xiangyu Xi | Shikun Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Current embedding-based large-scale retrieval models are trained with 0-1 hard label that indicates whether a query is relevant to a document, ignoring rich information of the relevance degree. This paper proposes to improve embedding-based retrieval from the perspective of better characterizing the query-document relevance degree by introducing label enhancement (LE) for the first time. To generate label distribution in the retrieval scenario, we design a novel and effective supervised LE method that incorporates prior knowledge from dynamic term weighting methods into contextual embeddings. Our method significantly outperforms four competitive existing retrieval models and its counterparts equipped with two alternative LE techniques by training models with the generated label distribution as auxiliary supervision information. The superiority can be easily observed on English and Chinese large-scale retrieval tasks under both standard and cold-start settings.