Xian Sun


pdf bib
Trigger is Not Sufficient: Exploiting Frame-aware Knowledge for Implicit Event Argument Extraction
Kaiwen Wei | Xian Sun | Zequn Zhang | Jingyuan Zhang | Guo Zhi | Li Jin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Implicit Event Argument Extraction seeks to identify arguments that play direct or implicit roles in a given event. However, most prior works focus on capturing direct relations between arguments and the event trigger. The lack of reasoning ability brings many challenges to the extraction of implicit arguments. In this work, we present a Frame-aware Event Argument Extraction (FEAE) learning framework to tackle this issue through reasoning in event frame-level scope. The proposed method leverages related arguments of the expected one as clues to guide the reasoning process. To bridge the gap between oracle knowledge used in the training phase and the imperfect related arguments in the test stage, we further introduce a curriculum knowledge distillation strategy to drive a final model that could operate without extra inputs through mimicking the behavior of a well-informed teacher model. Experimental results demonstrate FEAE obtains new state-of-the-art performance on the RAMS dataset.

pdf bib
1213Li at SemEval-2021 Task 6: Detection of Propaganda with Multi-modal Attention and Pre-trained Models
Peiguang Li | Xuan Li | Xian Sun
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents the solution proposed by the 1213Li team for subtask 3 in SemEval-2021 Task 6: identifying the multiple persuasion techniques used in the multi-modal content of the meme. We explored various approaches in feature extraction and the detection of persuasion labels. Our final model employs pre-trained models including RoBERTa and ResNet-50 as a feature extractor for texts and images, respectively, and adopts a label embedding layer with multi-modal attention mechanism to measure the similarity of labels with the multi-modal information and fuse features for label prediction. Our proposed method outperforms the provided baseline method and achieves 3rd out of 16 participants with 0.54860/0.22830 for Micro/Macro F1 scores.


pdf bib
Multistage Fusion with Forget Gate for Multimodal Summarization in Open-Domain Videos
Nayu Liu | Xian Sun | Hongfeng Yu | Wenkai Zhang | Guangluan Xu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Multimodal summarization for open-domain videos is an emerging task, aiming to generate a summary from multisource information (video, audio, transcript). Despite the success of recent multiencoder-decoder frameworks on this task, existing methods lack fine-grained multimodality interactions of multisource inputs. Besides, unlike other multimodal tasks, this task has longer multimodal sequences with more redundancy and noise. To address these two issues, we propose a multistage fusion network with the fusion forget gate module, which builds upon this approach by modeling fine-grained interactions between the modalities through a multistep fusion schema and controlling the flow of redundant information between multimodal long sequences via a forgetting module. Experimental results on the How2 dataset show that our proposed model achieves a new state-of-the-art performance. Comprehensive analysis empirically verifies the effectiveness of our fusion schema and forgetting module on multiple encoder-decoder architectures. Specially, when using high noise ASR transcripts (WER>30%), our model still achieves performance close to the ground-truth transcript model, which reduces manual annotation cost.