Xianbing Zhou
2021
Hate Speech Detection Based on Sentiment Knowledge Sharing
Xianbing Zhou
|
Yang Yong
|
Xiaochao Fan
|
Ge Ren
|
Yunfeng Song
|
Yufeng Diao
|
Liang Yang
|
Hongfei Lin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
The wanton spread of hate speech on the internet brings great harm to society and families. It is urgent to establish and improve automatic detection and active avoidance mechanisms for hate speech. While there exist methods for hate speech detection, they stereotype words and hence suffer from inherently biased training. In other words, getting more affective features from other affective resources will significantly affect the performance of hate speech detection. In this paper, we propose a hate speech detection framework based on sentiment knowledge sharing. While extracting the affective features of the target sentence itself, we make better use of the sentiment features from external resources, and finally fuse features from different feature extraction units to detect hate speech. Experimental results on two public datasets demonstrate the effectiveness of our model.
Search
Fix data
Co-authors
- Yufeng Diao 1
- Xiaochao Fan (樊小超) 1
- Hongfei Lin (林鸿飞) 1
- Ge Ren 1
- Yunfeng Song 1
- show all...