Xiang Liu

Also published as:


2024

pdf bib
Active Prompting with Chain-of-Thought for Large Language Models
Shizhe Diao | Pengcheng Wang | Yong Lin | Rui Pan | Xiang Liu | Tong Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The increasing scale of large language models (LLMs) brings emergent abilities to various complex tasks requiring reasoning, such as arithmetic and commonsense reasoning. It is known that the effective design of task-specific prompts is critical for LLMs’ ability to produce high-quality answers. In particular, an effective approach for complex question-and-answering tasks is example-based prompting with chain-of-thought (CoT) reasoning, which significantly improves the performance of LLMs. However, current CoT methods rely on a fixed set of human-annotated exemplars, which are not necessarily the most effective examples for different tasks. This paper proposes a new method, Active-Prompt, to adapt LLMs to different tasks with task-specific example prompts (annotated with human-designed CoT reasoning). For this purpose, we propose a solution to the key problem of determining which questions are the most important and helpful to annotate from a pool of task-specific queries. By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty so as to select the most uncertain questions for annotation. Experimental results demonstrate the superiority of our proposed method, achieving superior performance on eight complex reasoning tasks. Further analyses of different uncertainty metrics, pool sizes, zero-shot learning, and accuracy-uncertainty relationships demonstrate the effectiveness of our method.

pdf bib
MAPO: Advancing Multilingual Reasoning through Multilingual-Alignment-as-Preference Optimization
Shuaijie She | Wei Zou | Shujian Huang | Wenhao Zhu | Xiang Liu | Xiang Geng | Jiajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Intuitively, reasoning abilities are considered language-agnostic. However, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in the dominant language like English is superior to other languages due to the imbalance of multilingual training data. To enhance reasoning abilities in non-dominant languages, we propose a Multilingual-Alignment-as-Preference Optimization framework (MAPO) to align the reasoning processes in other languages with the dominant language. Specifically, we harness an off-the-shelf translation model for the consistency between answers in non-dominant and dominant languages, which we adopt as the preference for optimization, e.g., Direct Preference Optimization(DPO) or Proximal Policy Optimization (PPO). Experiments show that MAPO stably achieves significant improvements in the multilingual reasoning of various models on all three benchmarks (MSVAMP +16.2%, MGSM +6.1%, and MNumGLUESub +13.3%), with improved reasoning consistency across languages. The project is available at https://github.com/NJUNLP/MAPO.

pdf bib
Plum: Prompt Learning using Metaheuristics
Rui Pan | Shuo Xing | Shizhe Diao | Wenhe Sun | Xiang Liu | KaShun Shum | Jipeng Zhang | Renjie Pi | Tong Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly “general”, i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in white-box and black-box prompt learning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown in both reasoning and image generation tasks, opening the door to a cornucopia of possibilities in prompt optimization.

pdf bib
LongGenBench: Long-context Generation Benchmark
Xiang Liu | Peijie Dong | Xuming Hu | Xiaowen Chu
Findings of the Association for Computational Linguistics: EMNLP 2024

Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.

pdf bib
LPZero: Language Model Zero-cost Proxy Search from Zero
Peijie Dong | Lujun Li | Xiang Liu | Zhenheng Tang | Xuebo Liu | Qiang Wang | Xiaowen Chu
Findings of the Association for Computational Linguistics: EMNLP 2024

Despite the outstanding performance, Neural Architecture Search (NAS) is criticized for massive computation. Recently, Zero-shot NAS has emerged as a promising approach by exploiting Zero-cost (ZC) proxies, which markedly reduce computational demands. Despite this, existing ZC proxies heavily rely on expert knowledge and incur significant trial-and-error costs. Particularly in NLP tasks, most existing ZC proxies fail to surpass the performance of the naive baseline. To address these challenges, we introduce a novel framework, LPZero, which is the first to automatically design zero-cost (ZC) proxies for various tasks, achieving higher ranking consistency than human-designed proxies. Specifically, we model the ZC proxy as a symbolic equation and incorporate a unified proxy search space that encompasses existing ZC proxies, which are composed of a predefined set of mathematical symbols. To heuristically search for the best ZC proxy, LPZero incorporates genetic programming to find the optimal symbolic composition. We propose a Predictive-Pruning Strategy (PPS), which preemptively eliminates unpromising proxies, thereby mitigating the risk of proxy degradation. Extensive experiments on FlexiBERT, GPT-2, and LLaMA-7B demonstrate LPZero’s superior ranking ability and performance on downstream tasks compared to current approaches.

pdf bib
R3-NL2GQL: A Model Coordination and Knowledge Graph Alignment Approach for NL2GQL
Yuhang Zhou | Yu He | Siyu Tian | Yuchen Ni | Zhangyue Yin | Xiang Liu | Chuanjun Ji | Sen Liu | Xipeng Qiu | Guangnan Ye | Hongfeng Chai
Findings of the Association for Computational Linguistics: EMNLP 2024

While current tasks of converting natural language to SQL (NL2SQL) using Foundation Models have shown impressive achievements, adapting these approaches for converting natural language to Graph Query Language (NL2GQL) encounters hurdles due to the distinct nature of GQL compared to SQL, alongside the diverse forms of GQL. Moving away from traditional rule-based and slot-filling methodologies, we introduce a novel approach, R3-NL2GQL, integrating both small and large Foundation Models for ranking, rewriting, and refining tasks. This method leverages the interpretative strengths of smaller models for initial ranking and rewriting stages, while capitalizing on the superior generalization and query generation prowess of larger models for the final transformation of natural language queries into GQL formats. Addressing the scarcity of datasets in this emerging field, we have developed a bilingual dataset, sourced from graph database manuals and selected open-source Knowledge Graphs (KGs). Our evaluation of this methodology on this dataset demonstrates its promising efficacy and robustness.

2021

pdf bib
基于小句复合体的中文机器阅读理解研究(Machine Reading Comprehension Based on Clause Complex)
Ruiqi Wang (王瑞琦) | Zhiyong Luo (罗智勇) | Xiang Liu (刘祥) | Rui Han (韩瑞昉) | Shuxin Li (李舒馨)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

机器阅读理解任务要求机器根据篇章文本回答相关问题。本文以抽取式机器阅读理解为例,重点考察当问题的线索要素与答案在篇章文本中跨越多个标点句时的阅读理解问题。本文将小句复合体结构自动分析任务与机器阅读理解任务融合,利用小句复合体中跨标点句话头札话体共享关系,来化简机器阅读理解任务的难度;并设计与实现了基于小句复合体的机器阅读理解模型。实验结果表明:在问题线索要素与答案跨越多个标点句时,答案抽取的精确匹配率(EM)相对于基准模型提升了3.49%,模型整体的精确匹配率提升了3.26%。