Xiang Luo


2024

pdf bib
Zero-Shot Cross-Domain Dialogue State Tracking via Dual Low-Rank Adaptation
Xiang Luo | Zhiwen Tang | Jin Wang | Xuejie Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Zero-shot dialogue state tracking (DST) seeks to enable dialogue systems to transition to unfamiliar domains without manual annotation or extensive retraining. Prior research has approached this objective by embedding prompts into language models (LMs). Common methodologies include integrating prompts at the input layer or introducing learnable variables at each transformer layer. Nonetheless, each strategy exhibits inherent limitations. Prompts integrated at the input layer risk underutilization, with their impact potentially diminishing across successive transformer layers. Conversely, the addition of learnable variables to each layer can complicate the training process and increase inference latency. To tackle the issues mentioned above, this paper proposes Dual Low-Rank Adaptation (DualLoRA), a plug-and-play architecture designed for zero-shot DST. DualLoRA incorporates two distinct Low-Rank Adaptation (LoRA) components, targeting both dialogue context processing and prompt optimization, to ensure the comprehensive influence of prompts throughout the transformer model layers. This is achieved without incurring additional inference latency, showcasing an efficient integration into existing architectures. Through rigorous evaluation on the MultiWOZ and SGD datasets, DualLoRA demonstrates notable improvements across multiple domains, outperforming traditional baseline methods in zero-shot settings.

pdf bib
DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
Xiang Luo | Zhiwen Tang | Jin Wang | Xuejie Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

User Simulators play a pivotal role in training and evaluating task-oriented dialogue systems. Traditional user simulators typically rely on human-engineered agendas, resulting in generated responses that often lack diversity and spontaneity. Although large language models (LLMs) exhibit a remarkable capacity for generating coherent and contextually appropriate utterances, they may fall short when tasked with generating responses that effectively guide users towards their goals, particularly in dialogues with intricate constraints and requirements. This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging LLMs. DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification. This dual LLM approach empowers DuetSim to produce responses that not only exhibit diversity but also demonstrate accuracy and are preferred by human users. We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness, largely attributed to the incorporation of the second LLM.

2022

pdf bib
YNU-HPCC at ROCLING 2022 Shared Task: A Transformer-based Model with Focal Loss and Regularization Dropout for Chinese Healthcare Named Entity Recognition
Xiang Luo | Jin Wang | Xuejie Zhang
Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)

Named Entity Recognition (NER) is a fundamental task in information extraction that locates the mentions of named entities and classifies them in unstructured texts. Previous studies typically used hidden Markov model (HMM) and conditional random fields (CRF) for NER. To learn long-distance dependencies in text, recurrent neural networks, e.g., LSTM and GRU can extract the semantic features for each token with a sequential manner. Based on Transformers, this paper describes the contribution to ROCLING-2022 Share Task. This paper adopts a transformer-based model with focal Loss and regularization dropout. The focal loss is to overcome the uneven distribution of the label. The regularization dropout (r-drop) is to address the problem of vocabulary and descriptions that are too domain-specific. The ensemble learning is to improve the performance of the model. Comparative experiments were conducted on dev set to select the model with the best performance for submission. That is, BERT model with BiLSTM-CRF, focal loss and R-Drop has achieved the best F1-score of 0.7768 and rank the 4th place.

pdf bib
TCU at SemEval-2022 Task 8: A Stacking Ensemble Transformer Model for Multilingual News Article Similarity
Xiang Luo | Yanqing Niu | Boer Zhu
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Previous studies focus on measuring the degree of similarity of textsby using traditional machine learning methods, such as Support Vector Regression (SVR). Based on Transformers, this paper describes our contribution to SemEval-2022 Task 8 Multilingual News Article Similarity. The similarity of multilingual news articles requires a regression prediction on the similarity of multilingual articles, rather than a classification for judging text similarity. This paper mainly describes the architecture of the model and how to adjust the parameters in the experiment and strengthen the generalization ability. In this paper, we implement and construct different models through transformer-based models. We applied different transformer-based models, as well as ensemble them together by using ensemble learning. To avoid the overfit, we focus on the adjustment of parameters and the increase of generalization ability in our experiments. In the last submitted contest, we achieve a score of 0.715 and rank the 21st place.