Transformers generalize to novel compositions of structures and entities after being trained on a complex dataset, but easily overfit on datasets of insufficient complexity. We observe that when the training set is sufficiently complex, the model encodes structurally equivalent sentences using a systematic attention pattern. Inspired by this observation, we propose SQ-Transformer (Structurally Quantized) that explicitly encourages systematicity in the embeddings and attention layers even with low-complexity data. At the embedding level, we introduce Structure-oriented Vector Quantization (SoVQ) to cluster word embeddings into several classes of structurally equivalent entities. At the attention level, we devise the Systematic Attention Layer (SAL) and an alternative, Systematically Regularized Layer (SRL) that operate on the quantized word embeddings so that sentences of the same structure are encoded with invariant or similar attention patterns. Empirically, we show SQ-Transformer achieves stronger compositional generalization than the vanilla Transformer on multiple low-complexity semantic parsing and machine translation datasets. In our analysis, we show SoVQ indeed learns a syntactically clustered embedding space, and SAL/SRL induces generalizable attention patterns, altogether leading to improved systematicity.
Confusing charge prediction is a challenging task in legal AI, which involves predicting confusing charges based on fact descriptions. While existing charge prediction methods have shown impressive performance, they face significant challenges when dealing with confusing charges, such as Snatch and Robbery. In the legal domain, constituent elements play a pivotal role in distinguishing confusing charges. Constituent elements are fundamental behaviors underlying criminal punishment and have subtle distinctions among charges. In this paper, we introduce a novel From Graph to Word Bag (FWGB) approach, which introduces domain knowledge regarding constituent elements to guide the model in making judgments on confusing charges, much like a judge’s reasoning process. Specifically, we first construct a legal knowledge graph containing constituent elements to help select keywords for each charge, forming a word bag. Subsequently, to guide the model’s attention towards the differentiating information for each charge within the context, we expand the attention mechanism and introduce a new loss function with attention supervision through words in the word bag. We construct the confusing charges dataset from real-world judicial documents. Experiments demonstrate the effectiveness of our method, especially in maintaining exceptional performance in imbalanced label distributions.
Recently, much research in psychology has benefited from the advances in machine learning techniques. Some recent studies showed that it is possible to build automated scoring models for children’s mindreading. These models were trained on a set of manually-labeled question-response pairs, which were collected by asking children to answer one or two questions after a short story is told or a video clip is played. However, existing models did not take the features of the stories and video clips into account when scoring, which obviously will reduce the accuracy of the scoring models. Furthermore, considering that different psychological tests may contain the same questions, this approach cannot be extended to other related psychological test datasets. In this study, we proposed a multi-modal learning framework to leverage the features extracted from the stories and videos related to the questions being asked during the children’s mindreading evaluation. Experimental results show that the scores produced by the proposed models agree well with those graded by human experts, highlighting the potential of the proposed network architecture for practical automated children’s mindreading scoring systems.
Universal Information Extraction (UIE) is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas. Previous works have achieved success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE), while they fall short of being true UIE models particularly when extracting other general schemas such as quadruples and quintuples. Additionally, these models used an implicit structural schema instructor, which could lead to incorrect links between types, hindering the model’s generalization and performance in low-resource scenarios. In this paper, we redefine the true UIE with a formal formulation that covers almost all extraction schemas. To the best of our knowledge, we are the first to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which is a Recursive Method with Explicit Schema Instructor for UIE. To avoid interference between different types, we reset the position ids and attention mask matrices. RexUIE shows strong performance under both full-shot and few-shot settings and achieves state-of-the-art results on the tasks of extracting complex schemas.
Multi-step reasoning ability is fundamental to many natural language tasks, yet it is unclear what constitutes a good reasoning chain and how to evaluate them. Most existing methods focus solely on whether the reasoning chain leads to the correct conclusion, but this answer-oriented view may confound reasoning quality with other spurious shortcuts to predict the answer. To bridge this gap, we evaluate reasoning chains by viewing them as informal proofs that derive the final answer. Specifically, we propose ReCEval (Reasoning Chain Evaluation), a framework that evaluates reasoning chains via two key properties: (1) correctness, i.e., each step makes a valid inference based on information contained within the step, preceding steps, and input context, and (2) informativeness, i.e., each step provides new information that is helpful towards deriving the generated answer. We evaluate these properties by developing metrics using natural language inference models and 𝒱-Information. On multiple datasets, we show that ReCEval effectively identifies various error types and yields notable improvements compared to prior methods. We analyze the impact of step boundaries, and previous steps on evaluating correctness and demonstrate that our informativeness metric captures the expected flow of information in high-quality reasoning chains. Finally, we show that scoring reasoning chains based on ReCEval improves downstream task performance.
Recent diagnostic datasets on compositional generalization, such as SCAN (Lake and Baroni, 2018) and COGS (Kim and Linzen, 2020), expose severe problems in models trained from scratch on these datasets. However, in contrast to this poor performance, state-of-the-art models trained on larger and more general datasets show better generalization ability. In this work, to reconcile this inconsistency, we conduct an empirical analysis by training Transformer models on a variety of training sets with different data factors, including dataset scale, pattern complexity, example difficulty, etc. First, we show that increased dataset complexity can lead to better generalization behavior on multiple different generalization challenges. To further understand this improvement, we show two axes of the benefit from more complex datasets: they provide more diverse examples so compositional understanding becomes more effective, and they also prevent ungeneralizable memorization of the examples due to reduced example repetition frequency. Finally, we explore how training examples of different difficulty levels influence generalization differently. On synthetic datasets, simple examples invoke stronger compositionality than hard examples do. On larger-scale real language datasets, while hard examples become more important potentially to ensure decent data coverage, a balanced mixture of simple and hard examples manages to induce the strongest generalizability.
Providing natural language instructions in prompts is a useful new paradigm for improving task performance of large language models in a zero-shot setting. Recent work has aimed to improve such prompts via manual rewriting or gradient-based tuning. However, manual rewriting is time-consuming and requires subjective interpretation, while gradient-based tuning can be extremely computationally demanding for large models and may not be feasible for API-based models. In this work, we introduce Gradient-free Instructional Prompt Search (GrIPS), a gradient-free, edit-based search approach for improving task instructions for large language models. GrIPS takes in instructions designed for humans and automatically returns an improved, edited prompt, while allowing for API-based tuning. With InstructGPT models, GrIPS improves the average task performance by up to 4.30 percentage points on eight classification tasks from the Natural Instructions dataset (with similar improvements for OPT, BLOOM, and FLAN-T5). We see improvements for both instruction-only prompts and instruction + k-shot examples prompts. Notably, GrIPS outperforms manual rewriting and purely example-based prompts while controlling for the available compute and data budget. Further, performance of GrIPS is comparable to select gradient-based tuning approaches. Qualitatively, we show our edits can simplify instructions and at times make them incoherent but nonetheless improve accuracy.
While many real-life tasks require reasoning over multi-step sequential instructions, collecting fine-grained annotations for each intermediate step can be prohibitively expensive. In this work, we study how general pretrained sequence-to-sequence transformers perform under varying types of annotation for sequential instruction understanding. We conduct experiments using T5 (Raffel et al., 2020) on a commonly-used multi-step instruction understanding dataset SCONE (Long et al., 2016) that includes three sub-tasks. First, we show that with only gold supervision for the final step of a multi-step instruction sequence, depending on the sequential properties of different tasks, transformers may exhibit extremely bad performance on intermediate steps, in stark contrast with their performance on the final step. Next, we explore two directions to relieve this problem. We show that with the same limited annotation budget, using supervision uniformly distributed across different steps (instead of only final-step supervision), we can greatly improve the performance on intermediate steps with a drop in final-step performance. Further, we explore a contrastive learning approach to provide training signals on intermediate steps with zero intermediate gold supervision. This, however, achieves mixed results. It significantly improves the model’s bad intermediate-step performance on one subtask, but also shows decreased performance on another subtask.
Previous Part-Of-Speech (POS) induction models usually assume certain independence assumptions (e.g., Markov, unidirectional, local dependency) that do not hold in real languages. For example, the subject-verb agreement can be both long-term and bidirectional. To facilitate flexible dependency modeling, we propose a Masked Part-of-Speech Model (MPoSM), inspired by the recent success of Masked Language Models (MLM). MPoSM can model arbitrary tag dependency and perform POS induction through the objective of masked POS reconstruction. We achieve competitive results on both the English Penn WSJ dataset as well as the universal treebank containing 10 diverse languages. Though modeling the long-term dependency should ideally help this task, our ablation study shows mixed trends in different languages. To better understand this phenomenon, we design a novel synthetic experiment that can specifically diagnose the model’s ability to learn tag agreement. Surprisingly, we find that even strong baselines fail to solve this problem consistently in a very simplified setting: the agreement between adjacent words. Nonetheless, MPoSM achieves overall better performance. Lastly, we conduct a detailed error analysis to shed light on other remaining challenges.
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models. In this work, we analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias (one target sequence can only be mapped to one source sequence), and the tendency to memorize whole examples rather than separating structures from contents. We propose two techniques to address these two issues respectively: Mutual Exclusivity Training that prevents the model from producing seen generations when facing novel examples via an unlikelihood-based loss, and prim2primX data augmentation that automatically diversifies the arguments of every syntactic function to prevent memorizing and provide a compositional inductive bias without exposing test-set data. Combining these two techniques, we show substantial empirical improvements using standard sequence-to-sequence models (LSTMs and Transformers) on two widely-used compositionality datasets: SCAN and COGS. Finally, we provide analysis characterizing the improvements as well as the remaining challenges, and provide detailed ablations of our method.
We introduce distributed NLI, a new NLU task with a goal to predict the distribution of human judgements for natural language inference. We show that by applying additional distribution estimation methods, namely, Monte Carlo (MC) Dropout, Deep Ensemble, Re-Calibration, and Distribution Distillation, models can capture human judgement distribution more effectively than the softmax baseline. We show that MC Dropout is able to achieve decent performance without any distribution annotations while Re-Calibration can give further improvements with extra distribution annotations, suggesting the value of multiple annotations for one example in modeling the distribution of human judgements. Despite these improvements, the best results are still far below the estimated human upper-bound, indicating that predicting the distribution of human judgements is still an open, challenging problem with a large room for improvements. We showcase the common errors for MC Dropout and Re-Calibration. Finally, we give guidelines on the usage of these methods with different levels of data availability and encourage future work on modeling the human opinion distribution for language reasoning.
Existing studies have demonstrated that adversarial examples can be directly attributed to the presence of non-robust features, which are highly predictive, but can be easily manipulated by adversaries to fool NLP models. In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory. Through extensive experiments, we show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy, exceeding performances of all the previously reported defense methods while suffering almost no performance drop in clean accuracy on SST-2, AGNEWS and IMDB datasets.
Automatic unreliable news detection is a research problem with great potential impact. Recently, several papers have shown promising results on large-scale news datasets with models that only use the article itself without resorting to any fact-checking mechanism or retrieving any supporting evidence. In this work, we take a closer look at these datasets. While they all provide valuable resources for future research, we observe a number of problems that may lead to results that do not generalize in more realistic settings. Specifically, we show that selection bias during data collection leads to undesired artifacts in the datasets. In addition, while most systems train and predict at the level of individual articles, overlapping article sources in the training and evaluation data can provide a strong confounding factor that models can exploit. In the presence of this confounding factor, the models can achieve good performance by directly memorizing the site-label mapping instead of modeling the real task of unreliable news detection. We observed a significant drop (>10%) in accuracy for all models tested in a clean split with no train/test source overlap. Using the observations and experimental results, we provide practical suggestions on how to create more reliable datasets for the unreliable news detection task. We suggest future dataset creation include a simple model as a difficulty/bias probe and future model development use a clean non-overlapping site and date split.
While deep learning models are making fast progress on the task of Natural Language Inference, recent studies have also shown that these models achieve high accuracy by exploiting several dataset biases, and without deep understanding of the language semantics. Using contradiction-word bias and word-overlapping bias as our two bias examples, this paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases. First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method. Next, we also compare two ways of directly debiasing the model without knowing what the dataset biases are in advance. The first approach aims to remove the label bias at the embedding level. The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features by forcing orthogonality between these two sub-models. We performed evaluations on new balanced datasets extracted from the original MNLI dataset as well as the NLI stress tests, and show that the orthogonality approach is better at debiasing the model while maintaining competitive overall accuracy.
We find that the performance of state-of-the-art models on Natural Language Inference (NLI) and Reading Comprehension (RC) analysis/stress sets can be highly unstable. This raises three questions: (1) How will the instability affect the reliability of the conclusions drawn based on these analysis sets? (2) Where does this instability come from? (3) How should we handle this instability and what are some potential solutions? For the first question, we conduct a thorough empirical study over analysis sets and find that in addition to the unstable final performance, the instability exists all along the training curve. We also observe lower-than-expected correlations between the analysis validation set and standard validation set, questioning the effectiveness of the current model-selection routine. Next, to answer the second question, we give both theoretical explanations and empirical evidence regarding the source of the instability, demonstrating that the instability mainly comes from high inter-example correlations within analysis sets. Finally, for the third question, we discuss an initial attempt to mitigate the instability and suggest guidelines for future work such as reporting the decomposed variance for more interpretable results and fair comparison across models.
Despite the subjective nature of many NLP tasks, most NLU evaluations have focused on using the majority label with presumably high agreement as the ground truth. Less attention has been paid to the distribution of human opinions. We collect ChaosNLI, a dataset with a total of 464,500 annotations to study Collective HumAn OpinionS in oft-used NLI evaluation sets. This dataset is created by collecting 100 annotations per example for 3,113 examples in SNLI and MNLI and 1,532 examples in αNLI. Analysis reveals that: (1) high human disagreement exists in a noticeable amount of examples in these datasets; (2) the state-of-the-art models lack the ability to recover the distribution over human labels; (3) models achieve near-perfect accuracy on the subset of data with a high level of human agreement, whereas they can barely beat a random guess on the data with low levels of human agreement, which compose most of the common errors made by state-of-the-art models on the evaluation sets. This questions the validity of improving model performance on old metrics for the low-agreement part of evaluation datasets. Hence, we argue for a detailed examination of human agreement in future data collection efforts, and evaluating model outputs against the distribution over collective human opinions.
The key to building an evolvable dialogue system in real-world scenarios is to ensure an affordable on-line dialogue policy learning, which requires the on-line learning process to be safe, efficient and economical. But in reality, due to the scarcity of real interaction data, the dialogue system usually grows slowly. Besides, the poor initial dialogue policy easily leads to bad user experience and incurs a failure of attracting users to contribute training data, so that the learning process is unsustainable. To accurately depict this, two quantitative metrics are proposed to assess safety and efficiency issues. For solving the unsustainable learning problem, we proposed a complete companion teaching framework incorporating the guidance from the human teacher. Since the human teaching is expensive, we compared various teaching schemes answering the question how and when to teach, to economically utilize teaching budget, so that make the online learning process affordable.
Hand-crafted rules and reinforcement learning (RL) are two popular choices to obtain dialogue policy. The rule-based policy is often reliable within predefined scope but not self-adaptable, whereas RL is evolvable with data but often suffers from a bad initial performance. We employ a companion learning framework to integrate the two approaches for on-line dialogue policy learning, in which a pre-defined rule-based policy acts as a “teacher” and guides a data-driven RL system by giving example actions as well as additional rewards. A novel agent-aware dropout Deep Q-Network (AAD-DQN) is proposed to address the problem of when to consult the teacher and how to learn from the teacher’s experiences. AAD-DQN, as a data-driven student policy, provides (1) two separate experience memories for student and teacher, (2) an uncertainty estimated by dropout to control the timing of consultation and learning. Simulation experiments showed that the proposed approach can significantly improve both safetyand efficiency of on-line policy optimization compared to other companion learning approaches as well as supervised pre-training using static dialogue corpus.
On-line dialogue policy learning is the key for building evolvable conversational agent in real world scenarios. Poor initial policy can easily lead to bad user experience and consequently fail to attract sufficient users for policy training. A novel framework, companion teaching, is proposed to include a human teacher in the dialogue policy training loop to address the cold start problem. Here, dialogue policy is trained using not only user’s reward, but also teacher’s example action as well as estimated immediate reward at turn level. Simulation experiments showed that, with small number of human teaching dialogues, the proposed approach can effectively improve user experience at the beginning and smoothly lead to good performance with more user interaction data.