Xiangnan Chen
2023
Global Structure Knowledge-Guided Relation Extraction Method for Visually-Rich Document
Xiangnan Chen
|
Qian Xiao
|
Juncheng Li
|
Duo Dong
|
Jun Lin
|
Xiaozhong Liu
|
Siliang Tang
Findings of the Association for Computational Linguistics: EMNLP 2023
Visual Relation Extraction (VRE) is a powerful means of discovering relationships between entities within visually-rich documents. Existing methods often focus on manipulating entity features to find pairwise relations, yet neglect the more fundamental structural information that links disparate entity pairs together. The absence of global structure information may make the model struggle to learn long-range relations and easily predict conflicted results. To alleviate such limitations, we propose a GlObal Structure knowledge-guided relation Extraction (GOSE) framework. GOSE initiates by generating preliminary relation predictions on entity pairs extracted from a scanned image of the document. Subsequently, global structural knowledge is captured from the preceding iterative predictions, which are then incorporated into the representations of the entities. This “generate-capture-incorporate” cycle is repeated multiple times, allowing entity representations and global structure knowledge to be mutually reinforced. Extensive experiments validate that GOSE not only outperforms existing methods in the standard fine-tuning setting but also reveals superior cross-lingual learning capabilities; indeed, even yields stronger data-efficient performance in the low-resource setting.
2021
ZJUKLAB at SemEval-2021 Task 4: Negative Augmentation with Language Model for Reading Comprehension of Abstract Meaning
Xin Xie
|
Xiangnan Chen
|
Xiang Chen
|
Yong Wang
|
Ningyu Zhang
|
Shumin Deng
|
Huajun Chen
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
This paper presents our systems for the three Subtasks of SemEval Task4: Reading Comprehension of Abstract Meaning (ReCAM). We explain the algorithms used to learn our models and the process of tuning the algorithms and selecting the best model. Inspired by the similarity of the ReCAM task and the language pre-training, we propose a simple yet effective technology, namely, negative augmentation with language model. Evaluation results demonstrate the effectiveness of our proposed approach. Our models achieve the 4th rank on both official test sets of Subtask 1 and Subtask 2 with an accuracy of 87.9% and an accuracy of 92.8%, respectively. We further conduct comprehensive model analysis and observe interesting error cases, which may promote future researches. The code and dataset used in our paper can be found at https://github.com/CheaSim/SemEval2021. The leaderboard can be found at https://competitions.codalab.org/competitions/26153.