Xiangnan He


2024

pdf bib
Text-like Encoding of Collaborative Information in Large Language Models for Recommendation
Yang Zhang | Keqin Bao | Ming Yan | Wenjie Wang | Fuli Feng | Xiangnan He
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

When adapting Large Language Models for Recommendation (LLMRec), it is crucial to integrate collaborative information. Existing methods achieve this by learning collaborative embeddings in LLMs’ latent space from scratch or by mapping from external models. However, they fail to represent the information in a text-like format, which may not align optimally with LLMs. To bridge this gap, we introduce BinLLM, a novel LLMRec method that seamlessly integrates collaborative information through text-like encoding. BinLLM converts collaborative embeddings from external models into binary sequences — a specific text format that LLMs can understand and operate on directly, facilitating the direct usage of collaborative information in text-like format by LLMs. Additionally, BinLLM provides options to compress the binary sequence using dot-decimal notation to avoid excessively long lengths. Extensive experiments validate that BinLLM introduces collaborative information in a manner better aligned with LLMs, resulting in enhanced performance. We release our code at https://github.com/zyang1580/BinLLM.

2023

pdf bib
Counterfactual Active Learning for Out-of-Distribution Generalization
Xun Deng | Wenjie Wang | Fuli Feng | Hanwang Zhang | Xiangnan He | Yong Liao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We study the out-of-distribution generalization of active learning that adaptively selects samples for annotation in learning the decision boundary of classification. Our empirical study finds that increasingly annotating seen samples may hardly benefit the generalization. To address the problem, we propose Counterfactual Active Learning (CounterAL) that empowers active learning with counterfactual thinking to bridge the seen samples with unseen cases. In addition to annotating factual samples, CounterAL requires annotators to answer counterfactual questions to construct counterfactual samples for training. To achieve CounterAL, we design a new acquisition strategy that selects the informative factual-counterfactual pairs for annotation; and a new training strategy that pushes the model update to focus on the discrepancy between factual and counterfactual samples. We evaluate CounterAL on multiple public datasets of sentiment analysis and natural language inference. The experiment results show that CounterAL requires fewer acquisition rounds and outperforms existing active learning methods by a large margin in OOD tests with comparable IID performance.

pdf bib
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Boyi Deng | Wenjie Wang | Fuli Feng | Yang Deng | Qifan Wang | Xiangnan He
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs.

2022

pdf bib
Learning to Imagine: Integrating Counterfactual Thinking in Neural Discrete Reasoning
Moxin Li | Fuli Feng | Hanwang Zhang | Xiangnan He | Fengbin Zhu | Tat-Seng Chua
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural discrete reasoning (NDR) has shown remarkable progress in combining deep models with discrete reasoning. However, we find that existing NDR solution suffers from large performance drop on hypothetical questions, e.g. “what the annualized rate of return would be if the revenue in 2020 was doubled”. The key to hypothetical question answering (HQA) is counterfactual thinking, which is a natural ability of human reasoning but difficult for deep models. In this work, we devise a Learning to Imagine (L2I) module, which can be seamlessly incorporated into NDR models to perform the imagination of unseen counterfactual. In particular, we formulate counterfactual thinking into two steps: 1) identifying the fact to intervene, and 2) deriving the counterfactual from the fact and assumption, which are designed as neural networks. Based on TAT-QA, we construct a very challenging HQA dataset with 8,283 hypothetical questions. We apply the proposed L2I to TAGOP, the state-of-the-art solution on TAT-QA, validating the rationality and effectiveness of our approach.

pdf bib
DebiasGAN: Eliminating Position Bias in News Recommendation with Adversarial Learning
Chuhan Wu | Fangzhao Wu | Xiangnan He | Yongfeng Huang
Findings of the Association for Computational Linguistics: EMNLP 2022

Click behaviors are widely used for learning news recommendation models, but they are heavily affected by the biases brought by the news display positions. It is important to remove position biases to train unbiased recommendation model and capture unbiased user interest. In this paper, we propose a news recommendation method named DebiasGAN that can effectively alleviate position biases via adversarial learning. The core idea is modeling the personalized effect of position bias on click behaviors in a candidate-aware way, and learning debiased candidate-aware user embeddings from which the position information cannot be discriminated. More specifically, we use a bias-aware click model to capture the effect of position bias on click behaviors, and use a bias-invariant click model with random candidate positions to estimate the ideally unbiased click scores. We apply adversarial learning to the embeddings learned by the two models to help the bias-invariant click model capture debiased user interest. Experimental results on two real-world datasets show that DebiasGAN effectively improves news recommendation by eliminating position biases.

pdf bib
Alibaba-Translate China’s Submission for WMT 2022 Quality Estimation Shared Task
Keqin Bao | Yu Wan | Dayiheng Liu | Baosong Yang | Wenqiang Lei | Xiangnan He | Derek F. Wong | Jun Xie
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this paper, we present our submission to the sentence-level MQM benchmark at Quality Estimation Shared Task, named UniTE (Unified Translation Evaluation). Specifically, our systems employ the framework of UniTE, which combined three types of input formats during training with a pre-trained language model. First, we apply the pseudo-labeled data examples for the continuously pre-training phase. Notably, to reduce the gap between pre-training and fine-tuning, we use data cropping and a ranking-based score normalization strategy. For the fine-tuning phase, we use both Direct Assessment (DA) and Multidimensional Quality Metrics (MQM) data from past years’ WMT competitions. Finally, we collect the source-only evaluation results, and ensemble the predictions generated by two UniTE models, whose backbones are XLM-R and infoXLM, respectively. Results show that our models reach 1st overall ranking in the Multilingual and English-Russian settings, and 2nd overall ranking in English-German and Chinese-English settings, showing relatively strong performances in this year’s quality estimation competition.

2021

pdf bib
Empowering Language Understanding with Counterfactual Reasoning
Fuli Feng | Jizhi Zhang | Xiangnan He | Hanwang Zhang | Tat-Seng Chua
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Graph-based Aspect Representation Learning for Entity Resolution
Zhenqi Zhao | Yuchen Guo | Dingxian Wang | Yufan Huang | Xiangnan He | Bin Gu
Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)

Entity Resolution (ER) identifies records that refer to the same real-world entity. Deep learning approaches improved the generalization ability of entity matching models, but hardly overcame the impact of noisy or incomplete data sources. In real scenes, an entity usually consists of multiple semantic facets, called aspects. In this paper, we focus on entity augmentation, namely retrieving the values of missing aspects. The relationship between aspects is naturally suitable to be represented by a knowledge graph, where entity augmentation can be modeled as a link prediction problem. Our paper proposes a novel graph-based approach to solve entity augmentation. Specifically, we apply a dedicated random walk algorithm, which uses node types to limit the traversal length, and encodes graph structure into low-dimensional embeddings. Thus, the missing aspects could be retrieved by a link prediction model. Furthermore, the augmented aspects with fixed orders are served as the input of a deep Siamese BiLSTM network for entity matching. We compared our method with state-of-the-art methods through extensive experiments on downstream ER tasks. According to the experiment results, our model outperforms other methods on evaluation metrics (accuracy, precision, recall, and f1-score) to a large extent, which demonstrates the effectiveness of our method.

2018

pdf bib
Sequicity: Simplifying Task-oriented Dialogue Systems with Single Sequence-to-Sequence Architectures
Wenqiang Lei | Xisen Jin | Min-Yen Kan | Zhaochun Ren | Xiangnan He | Dawei Yin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing solutions to task-oriented dialogue systems follow pipeline designs which introduces architectural complexity and fragility. We propose a novel, holistic, extendable framework based on a single sequence-to-sequence (seq2seq) model which can be optimized with supervised or reinforcement learning. A key contribution is that we design text spans named belief spans to track dialogue believes, allowing task-oriented dialogue systems to be modeled in a seq2seq way. Based on this, we propose a simplistic Two Stage CopyNet instantiation which emonstrates good scalability: significantly reducing model complexity in terms of number of parameters and training time by a magnitude. It significantly outperforms state-of-the-art pipeline-based methods on large datasets and retains a satisfactory entity match rate on out-of-vocabulary (OOV) cases where pipeline-designed competitors totally fail.

pdf bib
Batch IS NOT Heavy: Learning Word Representations From All Samples
Xin Xin | Fajie Yuan | Xiangnan He | Joemon M. Jose
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Stochastic Gradient Descent (SGD) with negative sampling is the most prevalent approach to learn word representations. However, it is known that sampling methods are biased especially when the sampling distribution deviates from the true data distribution. Besides, SGD suffers from dramatic fluctuation due to the one-sample learning scheme. In this work, we propose AllVec that uses batch gradient learning to generate word representations from all training samples. Remarkably, the time complexity of AllVec remains at the same level as SGD, being determined by the number of positive samples rather than all samples. We evaluate AllVec on several benchmark tasks. Experiments show that AllVec outperforms sampling-based SGD methods with comparable efficiency, especially for small training corpora.

2013

pdf bib
Mining Scientific Terms and their Definitions: A Study of the ACL Anthology
Yiping Jin | Min-Yen Kan | Jun-Ping Ng | Xiangnan He
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing