Xiangyu Li


pdf bib
RU22Fact: Optimizing Evidence for Multilingual Explainable Fact-Checking on Russia-Ukraine Conflict
Yirong Zeng | Xiao Ding | Yi Zhao | Xiangyu Li | Jie Zhang | Chao Yao | Ting Liu | Bing Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Fact-checking is the task of verifying the factuality of a given claim by examining the available evidence. High-quality evidence plays a vital role in enhancing fact-checking systems and facilitating the generation of explanations that are understandable to humans. However, the provision of both sufficient and relevant evidence for explainable fact-checking systems poses a challenge. To tackle this challenge, we propose a method based on a Large Language Model to automatically retrieve and summarize evidence from the Web. Furthermore, we construct RU22Fact, a novel multilingual explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples, each containing real-world claims, optimized evidence, and referenced explanation. To establish a baseline for our dataset, we also develop an end-to-end explainable fact-checking system to verify claims and generate explanations. Experimental results demonstrate the prospect of optimized evidence in increasing fact-checking performance and also indicate the possibility of further progress in the end-to-end claim verification and explanation generation tasks.

pdf bib
TP-Link: Fine-grained Pre-Training for Text-to-SQL Parsing with Linking Information
Ziqiang Liu | Shujie Li | Zefeng Cai | Xiangyu Li | Yunshui Li | Chengming Li | Xiping Hu | Ruifeng Xu | Min Yang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this paper, we introduce an innovative pre-training framework TP-Link, which aims to improve context-dependent Text-to-SQL Parsing by leveraging Linking information. This enhancement is achieved through better representation of both natural language utterances and the database schema, ultimately facilitating more effective text-to-SQL conversations. We present two novel pre-training objectives: (i) utterance linking prediction (ULP) task that models intricate syntactic relationships among natural language utterances in context-dependent text-to-SQL scenarios, and (ii) schema linking prediction (SLP) task that focuses on capturing fine-grained schema linking relationships between the utterances and the database schema. Extensive experiments demonstrate that our proposed TP-Link achieves state-of-the-art performance on two leading downstream benchmarks (i.e., SParC and CoSQL).


pdf bib
STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing
Zefeng Cai | Xiangyu Li | Binyuan Hui | Min Yang | Bowen Li | Binhua Li | Zheng Cao | Weijie Li | Fei Huang | Luo Si | Yongbin Li
Findings of the Association for Computational Linguistics: EMNLP 2022

In this paper, we propose a novel SQL guided pre-training framework STAR for context-dependent text-to-SQL parsing, which leverages contextual information to enrich natural language (NL) utterance and table schema representations for text-to-SQL conversations. Concretely, we propose two novel pre-training objectives which respectively explore the context-dependent interactions of NL utterances and SQL queries within each text-to-SQL conversation: (i) schema state tracking (SST) objective that tracks and explores the schema states of context-dependent SQL queries in the form of schema-states by predicting and updating the value of each schema slot during interaction; (ii) utterance dependency tracking (UDT) objective that employs weighted contrastive learning to pull together two semantically similar NL utterances and push away the representations of semantically dissimilar NL utterances within each conversation. In addition, we construct a high-quality large-scale context-dependent text-to-SQL conversation corpus to pre-train STAR. Extensive experiments show that STAR achieves new state-of-the-art performance on two downstream benchmarks (SParC and CoSQL), significantly outperforming previous pre-training methods and ranking first on the leaderboard. We believe the release of the constructed corpus, codebase and pre-trained STAR checkpoints would push forward the research in this area.