Xiaobo Guo


2023

pdf bib
Length Does Matter: Summary Length can Bias Summarization Metrics
Xiaobo Guo | Soroush Vosoughi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Establishing the characteristics of an effective summary is a complicated and often subjective endeavor. Consequently, the development of metrics for the summarization task has become a dynamic area of research within natural language processing. In this paper, we reveal that existing summarization metrics exhibit a bias toward the length of generated summaries. Our thorough experiments, conducted on a variety of datasets, metrics, and models, substantiate these findings. The results indicate that most metrics tend to favor longer summaries, even after accounting for other factors. To address this issue, we introduce a Bayesian normalization technique that effectively diminishes this bias. We demonstrate that our approach significantly improves the concordance between human annotators and the majority of metrics in terms of summary coherence.

2022

pdf bib
RotateCT: Knowledge Graph Embedding by Rotation and Coordinate Transformation in Complex Space
Yao Dong | Lei Wang | Ji Xiang | Xiaobo Guo | Yuqiang Xie
Proceedings of the 29th International Conference on Computational Linguistics

Knowledge graph embedding, which aims to learn representations of entities and relations in knowledge graphs, finds applications in various downstream tasks. The key to success of knowledge graph embedding models are the ability to model relation patterns including symmetry/antisymmetry, inversion, commutative composition and non-commutative composition. Although existing methods fail in modeling the non-commutative composition patterns, several approaches support this pattern by modeling beyond Euclidean space and complex space. Nevertheless, expanding to complicated spaces such as quaternion can easily lead to a substantial increase in the amount of parameters, which greatly reduces the computational efficiency. In this paper, we propose a new knowledge graph embedding method called RotateCT, which first transforms the coordinates of each entity, and then represents each relation as a rotation from head entity to tail entity in complex space. By design, RotateCT can infer the non-commutative composition patterns and improve the computational efficiency. Experiments on multiple datasets empirically show that RotateCT outperforms most state-of-the-art methods on link prediction and path query answering.

pdf bib
Capturing Topic Framing via Masked Language Modeling
Xiaobo Guo | Weicheng Ma | Soroush Vosoughi
Findings of the Association for Computational Linguistics: EMNLP 2022

Differential framing of issues can lead to divergent world views on important issues. This is especially true in domains where the information presented can reach a large audience, such as traditional and social media. Scalable and reliable measurement of such differential framing is an important first step in addressing them. In this work, based on the intuition that framing affects the tone and word choices in written language, we propose a framework for modeling the differential framing of issues through masked token prediction via large-scale fine-tuned language models (LMs). Specifically, we explore three key factors for our framework: 1) prompt generation methods for the masked token prediction; 2) methods for normalizing the output of fine-tuned LMs; 3) robustness to the choice of pre-trained LMs used for fine-tuning. Through experiments on a dataset of articles from traditional media outlets covering five diverse and politically polarized topics, we show that our framework can capture differential framing of these topics with high reliability.