Xiaodan Liang


2023

pdf bib
TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative Language Models
Jing Xiong | Jianhao Shen | Ye Yuan | Haiming Wang | Yichun Yin | Zhengying Liu | Lin Li | Zhijiang Guo | Qingxing Cao | Yinya Huang | Chuanyang Zheng | Xiaodan Liang | Ming Zhang | Qun Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Automated theorem proving (ATP) has become an appealing domain for exploring the reasoning ability of the recent successful generative language models. However, current ATP benchmarks are mainly focus on symbolic inference, but rarely involve the understanding of complex number combination reasoning. In this work, we propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proof but also evaluates a generative LM’s reasoning ability on formulas and capability to manipulate, group, and factor number terms. We gather trigonometric expressions and their reduced forms from web, annotate the simplification process manually, and translate it into the “Lean” formal language system. We then automatically generate additional examples from the annotated samples to expand the dataset. Furthermore, we also create three automatically generated training and testing datasets of varying difficulty and distributions. Our extensive experiments show our proposed TRIGO poses a new challenge for advanced generative LM’s including GPT-4 which is pre-trained on a considerable amount of open-source formal theorem-proving language data, and provide a new tool to study the generative LM’s ability on both formal and mathematical reasoning.

pdf bib
Composable Text Controls in Latent Space with ODEs
Guangyi Liu | Zeyu Feng | Yuan Gao | Zichao Yang | Xiaodan Liang | Junwei Bao | Xiaodong He | Shuguang Cui | Zhen Li | Zhiting Hu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Real-world text applications often involve composing a wide range of text control operations, such as editing the text w.r.t. an attribute, manipulating keywords and structure, and generating new text of desired properties. Prior work typically learns/finetunes a language model (LM) to perform individual or specific subsets of operations. Recent research has studied combining operations in a plug-and-play manner, often with costly search or optimization in the complex sequence space. This paper proposes a new efficient approach for composable text operations in the compact latent space of text. The low-dimensionality and differentiability of the text latent vector allow us to develop an efficient sampler based on ordinary differential equations (ODEs) given arbitrary plug-in operators (e.g., attribute classifiers). By connecting pretrained LMs (e.g., GPT2) to the latent space through efficient adaption, we then decode the sampled vectors into desired text sequences. The flexible approach permits diverse control operators (sentiment, tense, formality, keywords, etc.) acquired using any relevant data from different domains. Experiments show that composing those operators within our approach manages to generate or edit high-quality text, substantially improving over previous methods in terms of generation quality and efficiency.

pdf bib
DT-Solver: Automated Theorem Proving with Dynamic-Tree Sampling Guided by Proof-level Value Function
Haiming Wang | Ye Yuan | Zhengying Liu | Jianhao Shen | Yichun Yin | Jing Xiong | Enze Xie | Han Shi | Yujun Li | Lin Li | Jian Yin | Zhenguo Li | Xiaodan Liang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advances in neural theorem-proving resort to large language models and tree searches. When proving a theorem, a language model advises single-step actions based on the current proving state and the tree search finds a sequence of correct steps using actions given by the language model. However, prior works often conduct constant computation efforts for each proving state while ignoring that the hard states often need more exploration than easy states. Moreover, they evaluate and guide the proof search solely depending on the current proof state instead of considering the whole proof trajectory as human reasoning does. Here, to accommodate general theorems, we propose a novel Dynamic-Tree Driven Theorem Solver (DT-Solver) by guiding the search procedure with state confidence and proof-level values. Specifically, DT-Solver introduces a dynamic-tree Monte-Carlo search algorithm, which dynamically allocates computing budgets for different state confidences, guided by a new proof-level value function to discover proof states that require substantial exploration. Experiments on two popular theorem-proving datasets, PISA and Mathlib, show significant performance gains by our DT-Solver over the state-of-the-art approaches, with a 6.65% improvement on average in terms of success rate. And especially under low computing resource settings (11.03% improvement on average).

2022

pdf bib
Unbiased Math Word Problems Benchmark for Mitigating Solving Bias
Zhicheng Yang | Jinghui Qin | Jiaqi Chen | Xiaodan Liang
Findings of the Association for Computational Linguistics: NAACL 2022

In this paper, we revisit the solving bias when evaluating models on current Math Word Problem (MWP) benchmarks. However, current solvers exist solving bias which consists of data bias and learning bias due to biased dataset and improper training strategy. Our experiments verify MWP solvers are easy to be biased by the biased training datasets which do not cover diverse questions for each problem narrative of all MWPs, thus a solver can only learn shallow heuristics rather than deep semantics for understanding problems. Besides, an MWP can be naturally solved by multiple equivalent equations while current datasets take only one of the equivalent equations as ground truth, forcing the model to match the labeled ground truth and ignoring other equivalent equations. Here, we first introduce a novel MWP dataset named UnbiasedMWP which is constructed by varying the grounded expressions in our collected data and annotating them with corresponding multiple new questions manually. Then, to further mitigate learning bias, we propose a Dynamic Target Selection (DTS) Strategy to dynamically select more suitable target expressions according to the longest prefix match between the current model output and candidate equivalent equations which are obtained by applying commutative law during training. The results show that our UnbiasedMWP has significantly fewer biases than its original data and other datasets, posing a promising benchmark for fairly evaluating the solvers’ reasoning skills rather than matching nearest neighbors. And the solvers trained with our DTS achieve higher accuracies on multiple MWP benchmarks. The source code is available at https://github.com/yangzhch6/UnbiasedMWP.

pdf bib
LogicSolver: Towards Interpretable Math Word Problem Solving with Logical Prompt-enhanced Learning
Zhicheng Yang | Jinghui Qin | Jiaqi Chen | Liang Lin | Xiaodan Liang
Findings of the Association for Computational Linguistics: EMNLP 2022

Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously. The source code and dataset will be available at https://github.com/yangzhch6/InterMWP.

pdf bib
Visual-Language Navigation Pretraining via Prompt-based Environmental Self-exploration
Xiwen Liang | Fengda Zhu | Li Lingling | Hang Xu | Xiaodan Liang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Vision-language navigation (VLN) is a challenging task due to its large searching space in the environment. To address this problem, previous works have proposed some methods of fine-tuning a large model that pretrained on large-scale datasets. However, the conventional fine-tuning methods require extra human-labeled navigation data and lack self-exploration capabilities in environments, which hinders their generalization of unseen scenes. To improve the ability of fast cross-domain adaptation, we propose Prompt-based Environmental Self-exploration (ProbES), which can self-explore the environments by sampling trajectories and automatically generates structured instructions via a large-scale cross-modal pretrained model (CLIP). Our method fully utilizes the knowledge learned from CLIP to build an in-domain dataset by self-exploration without human labeling. Unlike the conventional approach of fine-tuning, we introduce prompt tuning to achieve fast adaptation for language embeddings, which substantially improves the learning efficiency by leveraging prior knowledge. By automatically synthesizing trajectory-instruction pairs in any environment without human supervision and instruction prompt tuning, our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE. Both qualitative and quantitative results show that our ProbES significantly improves the generalization ability of the navigation model.

pdf bib
Don’t Take It Literally: An Edit-Invariant Sequence Loss for Text Generation
Guangyi Liu | Zichao Yang | Tianhua Tao | Xiaodan Liang | Junwei Bao | Zhen Li | Xiaodong He | Shuguang Cui | Zhiting Hu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Neural text generation models are typically trained by maximizing log-likelihood with the sequence cross entropy (CE) loss, which encourages an exact token-by-token match between a target sequence with a generated sequence. Such training objective is sub-optimal when the target sequence is not perfect, e.g., when the target sequence is corrupted with noises, or when only weak sequence supervision is available. To address the challenge, we propose a novel Edit-Invariant Sequence Loss (EISL), which computes the matching loss of a target n-gram with all n-grams in the generated sequence. EISL is designed to be robust to various noises and edits in the target sequences. Moreover, the EISL computation is essentially an approximate convolution operation with target n-grams as kernels, which is easy to implement and efficient to compute with existing libraries. To demonstrate the effectiveness of EISL, we conduct experiments on a wide range of tasks, including machine translation with noisy target sequences, unsupervised text style transfer with only weak training signals, and non-autoregressive generation with non-predefined generation order. Experimental results show our method significantly outperforms the common CE loss and other strong baselines on all the tasks. EISL has a simple API that can be used as a drop-in replacement of the CE loss: https://github.com/guangyliu/EISL.

pdf bib
Improving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning
Yi Cheng | Wenge Liu | Wenjie Li | Jiashuo Wang | Ruihui Zhao | Bang Liu | Xiaodan Liang | Yefeng Zheng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Providing Emotional Support (ES) to soothe people in emotional distress is an essential capability in social interactions. Most existing researches on building ES conversation systems only considered single-turn interactions with users, which was over-simplified. In comparison, multi-turn ES conversation systems can provide ES more effectively, but face several new technical challenges, including: (1) how to adopt appropriate support strategies to achieve the long-term dialogue goal of comforting the user’s emotion; (2) how to dynamically model the user’s state. In this paper, we propose a novel system MultiESC to address these issues. For strategy planning, drawing inspiration from the A* search algorithm, we propose lookahead heuristics to estimate the future user feedback after using particular strategies, which helps to select strategies that can lead to the best long-term effects. For user state modeling, MultiESC focuses on capturing users’ subtle emotional expressions and understanding their emotion causes. Extensive experiments show that MultiESC significantly outperforms competitive baselines in both dialogue generation and strategy planning.

pdf bib
UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression
Jiaqi Chen | Tong Li | Jinghui Qin | Pan Lu | Liang Lin | Chongyu Chen | Xiaodan Liang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Geometry problem solving is a well-recognized testbed for evaluating the high-level multi-modal reasoning capability of deep models. In most existing works, two main geometry problems: calculation and proving, are usually treated as two specific tasks, hindering a deep model to unify its reasoning capability on multiple math tasks. However, in essence, these two tasks have similar problem representations and overlapped math knowledge which can improve the understanding and reasoning ability of a deep model on both two tasks. Therefore, we construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems. Each proving problem is annotated with a multi-step proof with reasons and mathematical expressions. The proof can be easily reformulated as a proving sequence that shares the same formats with the annotated program sequence for calculation problems. Naturally, we also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously in the form of sequence generation, which finally shows the reasoning ability can be improved on both two tasks by unifying formulation. Furthermore, we propose a Mathematical Expression Pretraining (MEP) method that aims to predict the mathematical expressions in the problem solution, thus improving the Geoformer model. Experiments on the UniGeo demonstrate that our proposed Geoformer obtains state-of-the-art performance by outperforming task-specific model NGS with over 5.6% and 3.2% accuracies on calculation and proving problems, respectively.

pdf bib
MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure
Yinya Huang | Hongming Zhang | Ruixin Hong | Xiaodan Liang | Changshui Zhang | Dong Yu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose a comprehensive benchmark to investigate models’ logical reasoning capabilities in complex real-life scenarios. Current explanation datasets often employ synthetic data with simple reasoning structures. Therefore, it cannot express more complex reasoning processes, such as the rebuttal to a reasoning step and the degree of certainty of the evidence. To this end, we propose a comprehensive logical reasoning explanation form. Based on the multi-hop chain of reasoning, the explanation form includes three main components: (1) The condition of rebuttal that the reasoning node can be challenged; (2) Logical formulae that uncover the internal texture of reasoning nodes; (3) Reasoning strength indicated by degrees of certainty. The fine-grained structure conforms to the real logical reasoning scenario, better fitting the human cognitive process but, simultaneously, is more challenging for the current models. We evaluate the current best models’ performance on this new explanation form. The experimental results show that generating reasoning graphs remains a challenging task for current models, even with the help of giant pre-trained language models.

pdf bib
RelCLIP: Adapting Language-Image Pretraining for Visual Relationship Detection via Relational Contrastive Learning
Yi Zhu | Zhaoqing Zhu | Bingqian Lin | Xiaodan Liang | Feng Zhao | Jianzhuang Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Conventional visual relationship detection models only use the numeric ids of relation labels for training, but ignore the semantic correlation between the labels, which leads to severe training biases and harms the generalization ability of representations. In this paper, we introduce compact language information of relation labels for regularizing the representation learning of visual relations. Specifically, we propose a simple yet effective visual Relationship prediction framework that transfers natural language knowledge learned from Contrastive Language-Image Pre-training (CLIP) models to enhance the relationship prediction, termed RelCLIP. Benefiting from the powerful visual-semantic alignment ability of CLIP at image level, we introduce a novel Relational Contrastive Learning (RCL) approach which explores relation-level visual-semantic alignment via learning to match cross-modal relational embeddings. By collaboratively learning the semantic coherence and discrepancy from relation triplets, the model can generate more discriminative and robust representations. Experimental results on the Visual Genome dataset show that RelCLIP achieves significant improvements over strong baselines under full (provide accurate labels) and distant supervision (provide noise labels), demonstrating its powerful generalization ability in learning relationship representations. Code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/RelCLIP.

2021

pdf bib
GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning
Jiaqi Chen | Jianheng Tang | Jinghui Qin | Xiaodan Liang | Lingbo Liu | Eric Xing | Liang Lin
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation
Chenhe Dong | Guangrun Wang | Hang Xu | Jiefeng Peng | Xiaozhe Ren | Xiaodan Liang
Findings of the Association for Computational Linguistics: EMNLP 2021

Pre-trained language models have shown remarkable results on various NLP tasks. Nevertheless, due to their bulky size and slow inference speed, it is hard to deploy them on edge devices. In this paper, we have a critical insight that improving the feed-forward network (FFN) in BERT has a higher gain than improving the multi-head attention (MHA) since the computational cost of FFN is 2~3 times larger than MHA. Hence, to compact BERT, we are devoted to designing efficient FFN as opposed to previous works that pay attention to MHA. Since FFN comprises a multilayer perceptron (MLP) that is essential in BERT optimization, we further design a thorough search space towards an advanced MLP and perform a coarse-to-fine mechanism to search for an efficient BERT architecture. Moreover, to accelerate searching and enhance model transferability, we employ a novel warm-up knowledge distillation strategy at each search stage. Extensive experiments show our searched EfficientBERT is 6.9× smaller and 4.4× faster than BERTBASE, and has competitive performances on GLUE and SQuAD Benchmarks. Concretely, EfficientBERT attains a 77.7 average score on GLUE test, 0.7 higher than MobileBERTTINY, and achieves an 85.3/74.5 F1 score on SQuAD v1.1/v2.0 dev, 3.2/2.7 higher than TinyBERT4 even without data augmentation. The code is released at https://github.com/cheneydon/efficient-bert.

pdf bib
Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning for Low-Resource Speech Recognition
Guolin Zheng | Yubei Xiao | Ke Gong | Pan Zhou | Xiaodan Liang | Liang Lin
Findings of the Association for Computational Linguistics: EMNLP 2021

Unifying acoustic and linguistic representation learning has become increasingly crucial to transfer the knowledge learned on the abundance of high-resource language data for low-resource speech recognition. Existing approaches simply cascade pre-trained acoustic and language models to learn the transfer from speech to text. However, how to solve the representation discrepancy of speech and text is unexplored, which hinders the utilization of acoustic and linguistic information. Moreover, previous works simply replace the embedding layer of the pre-trained language model with the acoustic features, which may cause the catastrophic forgetting problem. In this work, we introduce Wav-BERT, a cooperative acoustic and linguistic representation learning method to fuse and utilize the contextual information of speech and text. Specifically, we unify a pre-trained acoustic model (wav2vec 2.0) and a language model (BERT) into an end-to-end trainable framework. A Representation Aggregation Module is designed to aggregate acoustic and linguistic representation, and an Embedding Attention Module is introduced to incorporate acoustic information into BERT, which can effectively facilitate the cooperation of two pre-trained models and thus boost the representation learning. Extensive experiments show that our Wav-BERT significantly outperforms the existing approaches and achieves state-of-the-art performance on low-resource speech recognition.

pdf bib
DAGN: Discourse-Aware Graph Network for Logical Reasoning
Yinya Huang | Meng Fang | Yu Cao | Liwei Wang | Xiaodan Liang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent QA with logical reasoning questions requires passage-level relations among the sentences. However, current approaches still focus on sentence-level relations interacting among tokens. In this work, we explore aggregating passage-level clues for solving logical reasoning QA by using discourse-based information. We propose a discourse-aware graph network (DAGN) that reasons relying on the discourse structure of the texts. The model encodes discourse information as a graph with elementary discourse units (EDUs) and discourse relations, and learns the discourse-aware features via a graph network for downstream QA tasks. Experiments are conducted on two logical reasoning QA datasets, ReClor and LogiQA, and our proposed DAGN achieves competitive results. The source code is available at https://github.com/Eleanor-H/DAGN.

pdf bib
Towards Quantifiable Dialogue Coherence Evaluation
Zheng Ye | Liucun Lu | Lishan Huang | Liang Lin | Xiaodan Liang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Automatic dialogue coherence evaluation has attracted increasing attention and is crucial for developing promising dialogue systems. However, existing metrics have two major limitations: (a) they are mostly trained in a simplified two-level setting (coherent vs. incoherent), while humans give Likert-type multi-level coherence scores, dubbed as “quantifiable”; (b) their predicted coherence scores cannot align with the actual human rating standards due to the absence of human guidance during training. To address these limitations, we propose Quantifiable Dialogue Coherence Evaluation (QuantiDCE), a novel framework aiming to train a quantifiable dialogue coherence metric that can reflect the actual human rating standards. Specifically, QuantiDCE includes two training stages, Multi-Level Ranking (MLR) pre-training and Knowledge Distillation (KD) fine-tuning. During MLR pre-training, a new MLR loss is proposed for enabling the model to learn the coarse judgement of coherence degrees. Then, during KD fine-tuning, the pretrained model is further finetuned to learn the actual human rating standards with only very few human-annotated data. To advocate the generalizability even with limited fine-tuning data, a novel KD regularization is introduced to retain the knowledge learned at the pre-training stage. Experimental results show that the model trained by QuantiDCE presents stronger correlations with human judgements than the other state-of-the-art metrics.

pdf bib
Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks
Jinghui Qin | Xiaodan Liang | Yining Hong | Jianheng Tang | Liang Lin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Previous math word problem solvers following the encoder-decoder paradigm fail to explicitly incorporate essential math symbolic constraints, leading to unexplainable and unreasonable predictions. Herein, we propose Neural-Symbolic Solver (NS-Solver) to explicitly and seamlessly incorporate different levels of symbolic constraints by auxiliary tasks. Our NS-Solver consists of a problem reader to encode problems, a programmer to generate symbolic equations, and a symbolic executor to obtain answers. Along with target expression supervision, our solver is also optimized via 4 new auxiliary objectives to enforce different symbolic reasoning: a) self-supervised number prediction task predicting both number quantity and number locations; b) commonsense constant prediction task predicting what prior knowledge (e.g. how many legs a chicken has) is required; c) program consistency checker computing the semantic loss between predicted equation and target equation to ensure reasonable equation mapping; d) duality exploiting task exploiting the quasi-duality between symbolic equation generation and problem’s part-of-speech generation to enhance the understanding ability of a solver. Besides, to provide a more realistic and challenging benchmark for developing a universal and scalable solver, we also construct a new largescale MWP benchmark CM17K consisting of 4 kinds of MWPs (arithmetic, one-unknown linear, one-unknown non-linear, equation set) with more than 17K samples. Extensive experiments on Math23K and our CM17k demonstrate the superiority of our NS-Solver compared to state-of-the-art methods.

pdf bib
Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning
Pan Lu | Ran Gong | Shibiao Jiang | Liang Qiu | Siyuan Huang | Xiaodan Liang | Song-Chun Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Geometry problem solving has attracted much attention in the NLP community recently. The task is challenging as it requires abstract problem understanding and symbolic reasoning with axiomatic knowledge. However, current datasets are either small in scale or not publicly available. Thus, we construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language. We further propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS first parses the problem text and diagram into formal language automatically via rule-based text parsing and neural object detecting, respectively. Unlike implicit learning in existing methods, Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step. Also, a theorem predictor is designed to infer the theorem application sequence fed to the symbolic solver for the more efficient and reasonable searching path. Extensive experiments on the Geometry3K and GEOS datasets demonstrate that Inter-GPS achieves significant improvements over existing methods. The project with code and data is available at https://lupantech.github.io/inter-gps.

2020

pdf bib
Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems
Jinghui Qin | Lihui Lin | Xiaodan Liang | Rumin Zhang | Liang Lin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expression Tree (UET) to make the first attempt to represent the equations of various MWPs uniformly. Then a semantically-aligned universal tree-structured solver (SAU-Solver) based on an encoder-decoder framework is proposed to resolve multiple types of MWPs in a unified model, benefiting from our UET representation. Our SAU-Solver generates a universal expression tree explicitly by deciding which symbol to generate according to the generated symbols’ semantic meanings like human solving MWPs. Besides, our SAU-Solver also includes a novel subtree-level semanticallyaligned regularization to further enforce the semantic constraints and rationality of the generated expression tree by aligning with the contextual information. Finally, to validate the universality of our solver and extend the research boundary of MWPs, we introduce a new challenging Hybrid Math Word Problems dataset (HMWP), consisting of three types of MWPs. Experimental results on several MWPs datasets show that our model can solve universal types of MWPs and outperforms several state-of-the-art models.

pdf bib
GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating Open-Domain Dialogue Systems
Lishan Huang | Zheng Ye | Jinghui Qin | Liang Lin | Xiaodan Liang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Automatically evaluating dialogue coherence is a challenging but high-demand ability for developing high-quality open-domain dialogue systems. However, current evaluation metrics consider only surface features or utterance-level semantics, without explicitly considering the fine-grained topic transition dynamics of dialogue flows. Here, we first consider that the graph structure constituted with topics in a dialogue can accurately depict the underlying communication logic, which is a more natural way to produce persuasive metrics. Capitalized on the topic-level dialogue graph, we propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation. Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence. The graph representations are obtained by reasoning over topic-level dialogue graphs enhanced with the evidence from a commonsense graph, including k-hop neighboring representations and hop-attention weights. Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models in terms of the Pearson and Spearman correlations with human judgments. Besides, we release a new large-scale human evaluation benchmark to facilitate future research on automatic metrics.

pdf bib
A Data-Centric Framework for Composable NLP Workflows
Zhengzhong Liu | Guanxiong Ding | Avinash Bukkittu | Mansi Gupta | Pengzhi Gao | Atif Ahmed | Shikun Zhang | Xin Gao | Swapnil Singhavi | Linwei Li | Wei Wei | Zecong Hu | Haoran Shi | Xiaodan Liang | Teruko Mitamura | Eric Xing | Zhiting Hu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Empirical natural language processing (NLP) systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components, ranging from data ingestion, human annotation, to text retrieval, analysis, generation, and visualization. We establish a unified open-source framework to support fast development of such sophisticated NLP workflows in a composable manner. The framework introduces a uniform data representation to encode heterogeneous results by a wide range of NLP tasks. It offers a large repository of processors for NLP tasks, visualization, and annotation, which can be easily assembled with full interoperability under the unified representation. The highly extensible framework allows plugging in custom processors from external off-the-shelf NLP and deep learning libraries. The whole framework is delivered through two modularized yet integratable open-source projects, namely Forte (for workflow infrastructure and NLP function processors) and Stave (for user interaction, visualization, and annotation).

pdf bib
Data-to-Text Generation with Style Imitation
Shuai Lin | Wentao Wang | Zichao Yang | Xiaodan Liang | Frank F. Xu | Eric Xing | Zhiting Hu
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., sentence structures, word choices). More traditional systems use templates to determine the realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as “soft” templates. That is, a model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.

2019

pdf bib
Target-Guided Open-Domain Conversation
Jianheng Tang | Tiancheng Zhao | Chenyan Xiong | Xiaodan Liang | Eric Xing | Zhiting Hu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many real-world open-domain conversation applications have specific goals to achieve during open-ended chats, such as recommendation, psychotherapy, education, etc. We study the problem of imposing conversational goals on open-domain chat agents. In particular, we want a conversational system to chat naturally with human and proactively guide the conversation to a designated target subject. The problem is challenging as no public data is available for learning such a target-guided strategy. We propose a structured approach that introduces coarse-grained keywords to control the intended content of system responses. We then attain smooth conversation transition through turn-level supervised learning, and drive the conversation towards the target with discourse-level constraints. We further derive a keyword-augmented conversation dataset for the study. Quantitative and human evaluations show our system can produce meaningful and effective conversations, significantly improving over other approaches

pdf bib
Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
Zhiting Hu | Haoran Shi | Bowen Tan | Wentao Wang | Zichao Yang | Tiancheng Zhao | Junxian He | Lianhui Qin | Di Wang | Xuezhe Ma | Zhengzhong Liu | Xiaodan Liang | Wanrong Zhu | Devendra Sachan | Eric Xing
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks that transform any inputs into natural language, such as machine translation, summarization, dialog, content manipulation, and so forth. With the design goals of modularity, versatility, and extensibility in mind, Texar extracts common patterns underlying the diverse tasks and methodologies, creates a library of highly reusable modules and functionalities, and allows arbitrary model architectures and algorithmic paradigms. In Texar, model architecture, inference, and learning processes are properly decomposed. Modules at a high concept level can be freely assembled or plugged in/swapped out. Texar is thus particularly suitable for researchers and practitioners to do fast prototyping and experimentation. The versatile toolkit also fosters technique sharing across different text generation tasks. Texar supports both TensorFlow and PyTorch, and is released under Apache License 2.0 at https://www.texar.io.

2018

pdf bib
Texar: A Modularized, Versatile, and Extensible Toolbox for Text Generation
Zhiting Hu | Zichao Yang | Tiancheng Zhao | Haoran Shi | Junxian He | Di Wang | Xuezhe Ma | Zhengzhong Liu | Xiaodan Liang | Lianhui Qin | Devendra Singh Chaplot | Bowen Tan | Xingjiang Yu | Eric Xing
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)

We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks. Different from many existing toolkits that are specialized for specific applications (e.g., neural machine translation), Texar is designed to be highly flexible and versatile. This is achieved by abstracting the common patterns underlying the diverse tasks and methodologies, creating a library of highly reusable modules and functionalities, and enabling arbitrary model architectures and various algorithmic paradigms. The features make Texar particularly suitable for technique sharing and generalization across different text generation applications. The toolkit emphasizes heavily on extensibility and modularized system design, so that components can be freely plugged in or swapped out. We conduct extensive experiments and case studies to demonstrate the use and advantage of the toolkit.