Xiaohan Zhang


2022

pdf bib
Is the Brain Mechanism for Hierarchical Structure Building Universal Across Languages? An fMRI Study of Chinese and English
Xiaohan Zhang | Shaonan Wang | Nan Lin | Chengqing Zong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Evidence from psycholinguistic studies suggests that the human brain builds a hierarchical syntactic structure during language comprehension. However, it is still unknown whether the neural basis of such structures is universal across languages. In this paper, we first analyze the differences in language structure between two diverse languages: Chinese and English. By computing the working memory requirements when applying parsing strategies to different language structures, we find that top-down parsing generates less memory load for the right-branching English and bottom-up parsing is less memory-demanding for Chinese.Then we use functional magnetic resonance imaging (fMRI) to investigate whether the brain has different syntactic adaptation strategies in processing Chinese and English. Specifically, for both Chinese and English, we extract predictors from the implementations of different parsing strategies, i.e., bottom-up and top-down. Then, these predictors are separately associated with fMRI signals. Results show that for Chinese and English, the brain utilizes bottom-up and top-down parsing strategies separately. These results reveal that the brain adopts parsing strategies with less memory processing load according to different language structures.

pdf bib
How Does the Experimental Setting Affect the Conclusions of Neural Encoding Models?
Xiaohan Zhang | Shaonan Wang | Chengqing Zong
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Recent years have witnessed the tendency of neural encoding models on exploring brain language processing using naturalistic stimuli. Neural encoding models are data-driven methods that require an encoding model to investigate the mystery of brain mechanisms hidden in the data. As a data-driven method, the performance of encoding models is very sensitive to the experimental setting. However, it is unknown how the experimental setting further affects the conclusions of neural encoding models. This paper systematically investigated this problem and evaluated the influence of three experimental settings, i.e., the data size, the cross-validation training method, and the statistical testing method. Results demonstrate that inappropriate cross-validation training and small data size can substantially decrease the performance of encoding models, especially in the temporal lobe and the frontal lobe. And different null hypotheses in significance testing lead to highly different significant brain regions. Based on these results, we suggest a block-wise cross-validation training method and an adequate data size for increasing the performance of linear encoding models. We also propose two strict null hypotheses to control false positive discovery rates.