Xiaojun Meng


2024

pdf bib
Prompt-Based Length Controlled Generation with Multiple Control Types
Renlong Jie | Xiaojun Meng | Lifeng Shang | Xin Jiang | Qun Liu
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) have attracted great attention given their strong performance on a wide range of NLP tasks. In practice, users often expect generated texts to fall within a specific length range, making length controlled generation an important topic, especially for GPT-style models. Existing length control methods mostly focus on a simple control type of “equal to” a target length. Different from them, we propose a prompt-based method to achieve length controlled generation under different control types with high accuracy. In particular, we adopt reinforcement learning (RL) and sample filtering with the reward signal given by rule-based reward models, which enhances the length control ability of models by rewarding outputs that follow certain control instructions. In addition, we introduce a standard prompt extractor to parse arbitrary users’ input into standard control instructions. Experiments show that our method significantly improves the accuracy of prompt-based length control on popular summarization datasets like CNNDM and NYT under multiple control types. Moreover, both the standard prompt extractor and RL-tuned model show strong generalization to unseen control prompt templates.

2023

pdf bib
Wukong-Reader: Multi-modal Pre-training for Fine-grained Visual Document Understanding
Haoli Bai | Zhiguang Liu | Xiaojun Meng | Li Wentao | Shuang Liu | Yifeng Luo | Nian Xie | Rongfu Zheng | Liangwei Wang | Lu Hou | Jiansheng Wei | Xin Jiang | Qun Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised pre-training on millions of digital-born or scanned documents has shown promising advances in visual document understanding (VDU). While various vision-language pre-training objectives are studied in existing solutions, the document textline, as an intrinsic granularity in VDU, has seldom been explored so far. A document textline usually contains words that are spatially and semantically correlated, which can be easily obtained from OCR engines. In this paper, we propose Wukong-Reader, trained with new pre-training objectives to leverage the structural knowledge nested in document textlines. We introduce textline-region contrastive learning to achieve fine-grained alignment between the visual regions and texts of document textlines. Furthermore, masked region modeling and textline-grid matching are also designed to enhance the visual and layout representations of textlines. Experiments show that Wukong-Reader brings superior performance on various VDU tasks in both English and Chinese. The fine-grained alignment over textlines also empowers Wukong-Reader with promising localization ability.

pdf bib
HyperPELT: Unified Parameter-Efficient Language Model Tuning for Both Language and Vision-and-Language Tasks
Zhengkun Zhang | Wenya Guo | Xiaojun Meng | Yasheng Wang | Yadao Wang | Xin Jiang | Qun Liu | Zhenglu Yang
Findings of the Association for Computational Linguistics: ACL 2023

With the scale and capacity of pretrained models growing rapidly, parameter-efficient language model tuning has emerged as a popular paradigm for solving various NLP and Vision-and-Language (V&L) tasks. In this paper, we design a unified parameter-efficient multitask learning framework that works effectively on both NLP and V&L tasks. In particular, we use a shared hypernetwork that takes trainable hyper-embeddings and visual modality as input, and outputs weights for different modules in a pretrained language model, such as the parameters inserted into multi-head attention blocks (i.e., prefix-tuning) and feed-forward blocks (i.e., adapter-tuning.). Our proposed framework adds fewer trainable parameters in multi-task learning while achieving superior performances and transfer ability compared to state-of-the-art methods. Empirical results on the GLUE benchmark and multiple V&L tasks confirm the effectiveness of our framework.

2022

pdf bib
Sememe Prediction for BabelNet Synsets using Multilingual and Multimodal Information
Fanchao Qi | Chuancheng Lv | Zhiyuan Liu | Xiaojun Meng | Maosong Sun | Hai-Tao Zheng
Findings of the Association for Computational Linguistics: ACL 2022

In linguistics, a sememe is defined as the minimum semantic unit of languages. Sememe knowledge bases (KBs), which are built by manually annotating words with sememes, have been successfully applied to various NLP tasks. However, existing sememe KBs only cover a few languages, which hinders the wide utilization of sememes. To address this issue, the task of sememe prediction for BabelNet synsets (SPBS) is presented, aiming to build a multilingual sememe KB based on BabelNet, a multilingual encyclopedia dictionary. By automatically predicting sememes for a BabelNet synset, the words in many languages in the synset would obtain sememe annotations simultaneously. However, previous SPBS methods have not taken full advantage of the abundant information in BabelNet. In this paper, we utilize the multilingual synonyms, multilingual glosses and images in BabelNet for SPBS. We design a multimodal information fusion model to encode and combine this information for sememe prediction. Experimental results show the substantial outperformance of our model over previous methods (about 10 MAP and F1 scores). All the code and data of this paper can be obtained at https://github.com/thunlp/MSGI.