The evaluation of natural language generation (NLG) tasks is a significant and longstanding research area. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus **NLG-Eval** with annotations from both human and GPT-4 to alleviate the lack of relevant data in this field. Furthermore, we propose **Themis**, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency verification and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.
Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks. This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications. To address this benchmark contamination problem, we first propose a set of requirements that practical contamination detection methods should follow. Following these proposed requirements, we introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs. Our method constructs a counterpart for each piece of data with the same distribution, and performs statistical analysis of the corresponding confidence to test whether the model is significantly more confident under the original benchmark. We validate the effectiveness of PaCoST and apply it on popular open-source models and benchmarks. We find that almost all models and benchmarks we tested are suspected contaminated more or less. We finally call for new LLM evaluation methods.
Prompt compression condenses contexts while maintaining their informativeness for different usage scenarios. It not only shortens the inference time and reduces computational costs during the usage of large language models, but also lowers expenses when using closed-source models. In a preliminary study, we discover that when instructing language models to compress prompts, different compression styles (e.g., extractive or abstractive) impact performance of compressed prompts on downstream tasks. Building on this insight, we propose Style-Compress, a lightweight framework that adapts a smaller language model to compress prompts for a larger model on a new task without additional training. Our approach iteratively generates and selects effective compressed prompts as task-specific demonstrations through style variation and in-context learning, enabling smaller models to act as efficient compressors with task-specific examples. Style-Compress outperforms two baseline compression models in four tasks: original prompt reconstruction, text summarization, multi-hop QA, and CoT reasoning. In addition, with only 10 samples and 100 queries for adaptation, prompts compressed by Style-Compress achieve performance on par with or better than original prompts at a compression ratio of 0.25 or 0.5.
Human evaluation serves as the gold standard for assessing the quality of Natural Language Generation (NLG) systems. Nevertheless, the evaluation guideline, as a pivotal element ensuring reliable and reproducible human assessment, has received limited attention. Our investigation revealed that only 29.84% of recent papers involving human evaluation at top conferences release their evaluation guidelines, with vulnerabilities identified in 77.09% of these guidelines. Unreliable evaluation guidelines can yield inaccurate assessment outcomes, potentially impeding the advancement of NLG in the right direction. To address these challenges, we take an initial step towards reliable evaluation guidelines and propose the first human evaluation guideline dataset by collecting annotations of guidelines extracted from existing papers as well as generated via Large Language Models (LLMs). We then introduce a taxonomy of eight vulnerabilities and formulate a principle for composing evaluation guidelines. Furthermore, a method for detecting guideline vulnerabilities has been explored using LLMs, and we offer a set of recommendations to enhance reliability in human evaluation. The annotated human evaluation guideline dataset and code for the vulnerability detection method are publicly available online.
We present a reproduction study of the human evaluation of the coverage of fact checking explanations conducted by Atanasova et al. (2020), as a team in Track B of ReproNLP 2024. The setup of our reproduction study is almost the same as the original study, with some necessary modifications to the evaluation guideline and annotation interface. Our reproduction achieves a higher IAA of 0.20 compared to the original study’s 0.12, but discovers a mismatch between the IAA calculated by us with the raw annotation in the original study and the IAA reported in the original paper. Additionally, our reproduction results on the ranks of three types of explanations are drastically different from the original experiment, rendering that one important conclusion in the original paper cannot be confirmed at all. The case study illustrates that the annotators in the reproduction study may understand the quality criterion differently from the annotators in the original study.
Large language models (LLMs) have exhibited remarkable ability in code generation. However, generating the correct solution in a single attempt still remains a challenge. Prior works utilize verification properties in software engineering to verify and re-rank solutions in a majority voting manner. But the assumption behind them that generated verification properties have better qualities than solutions may not always hold. In this paper, we treat them equally as different perspectives of LLMs’ reasoning processes. We propose the Multi-Perspective Self-Consistency (MPSC) framework incorporating both inter- and intra-consistency across outputs from multiple perspectives. Specifically, we prompt LLMs to generate diverse outputs from three perspectives, Solution, Specification and Test case, constructing a 3-partite graph. With two measure functions of consistency, we embed both inter- and intra-consistency information into the graph. The optimal choice of solutions is then determined based on analysis in the graph.MPSC significantly boosts performance of foundation models (ChatGPT in this paper) on various benchmarks, including HumanEval (+15.91%), MBPP (+6.43%) and CodeContests (+9.37%), even surpassing GPT-4.
In recent years, substantial advancements have been made in the development of large language models, achieving remarkable performance across diverse tasks.To evaluate the knowledge ability of language models, previous studies have proposed lots of benchmarks based on question-answering pairs.We argue that it is not reliable and comprehensive to evaluate language models with a fixed question or limited paraphrases as the query, since language models are sensitive to prompt.Therefore, we introduce a novel concept named knowledge boundary to encompass both prompt-agnostic and prompt-sensitive knowledge within language models.Knowledge boundary avoids prompt sensitivity in language model evaluations, rendering them more dependable and robust.To explore the knowledge boundary for a given model, we propose projected gradient descent method with semantic constraints, a new algorithm designed to identify the optimal prompt for each piece of knowledge.Experiments demonstrate a superior performance of our algorithm in computing the knowledge boundary compared to existing methods.Furthermore, we evaluate the ability of multiple language models in several domains with knowledge boundary.
Some prior work has shown that LLMs perform well in NLG evaluation for different tasks. However, we discover that LLMs seem to confuse different evaluation criteria, which reduces their reliability. For further verification, we first consider avoiding issues of inconsistent conceptualization and vague expression in existing NLG quality criteria themselves. So we summarize a clear hierarchical classification system for 11 common aspects with corresponding different criteria from previous studies involved. Inspired by behavioral testing, we elaborately design 18 types of aspect-targeted perturbation attacks for fine-grained analysis of the evaluation behaviors of different LLMs. We also conduct human annotations beyond the guidance of the classification system to validate the impact of the perturbations. Our experimental results reveal confusion issues inherent in LLMs, as well as other noteworthy phenomena, and necessitate further research and improvements for LLM-based evaluation.
Contextual information, including the sentences in the same document and in other documents of the dataset, plays a crucial role in improving the accuracy of document-level ASR Error Correction (AEC), while most previous works ignore this. In this paper, we propose a context-aware method that utilizes a k-Nearest Neighbors (kNN) approach to enhance the AEC model by retrieving a datastore containing contextual information. We conduct experiments on two English and two Chinese datasets, and the results demonstrate that our proposed model can effectively utilize contextual information to improve document-level AEC. Furthermore, the context information from the whole dataset provides even better results.
Chinese Spelling Check (CSC) aims to detect and correct error tokens in Chinese contexts, which has a wide range of applications. However, it is confronted with the challenges of insufficient annotated data and the issue that previous methods may actually not fully leverage the existing datasets. In this paper, we introduce our plug-and-play retrieval method with error-robust information for Chinese Spelling Check (RERIC), which can be directly applied to existing CSC models. The datastore for retrieval is built completely based on the training data, with elaborate designs according to the characteristics of CSC. Specifically, we employ multimodal representations that fuse phonetic, morphologic, and contextual information in the calculation of query and key during retrieval to enhance robustness against potential errors. Furthermore, in order to better judge the retrieved candidates, the n-gram surrounding the token to be checked is regarded as the value and utilized for specific reranking. The experiment results on the SIGHAN benchmarks demonstrate that our proposed method achieves substantial improvements over existing work.
Hyperbole, or exaggeration, is a common linguistic phenomenon. The detection of hyperbole is an important part of understanding human expression. There have been several studies on hyperbole detection, but most of which focus on text modality only. However, with the development of social media, people can create hyperbolic expressions with various modalities, including text, images, videos, etc. In this paper, we focus on multimodal hyperbole detection. We create a multimodal detection dataset from Weibo (a Chinese social media) and carry out some studies on it. We treat the text and image from a piece of weibo as two modalities and explore the role of text and image for hyperbole detection. Different pre-trained multimodal encoders are also evaluated on this downstream task to show their performance. Besides, since this dataset is constructed from five different keywords, we also evaluate the cross-domain performance of different models. These studies can serve as a benchmark and point out the direction of further study on multimodal hyperbole detection.
Research on automated text summarization typically uses human and automatic evaluation methods. While most recent studies focus on intrinsic evaluation, which assesses the general quality of summaries, e.g. coherence and informativeness, we concentrate on task-based extrinsic evaluation to determine the usefulness of summaries. We incorporate three downstream tasks, namely question answering, text classification, and text similarity assessment, and measure the usefulness of summaries for these tasks by several metrics. Our findings reveal that summaries are generally useful in tasks that require a comprehensive grasp of the text but are less useful in tasks requiring a more specific understanding of the text. We also analyze the usefulness and inherent properties of summaries from different models, and find that fine-tuned models consistently produce more useful summaries across all three tasks. In contrast, zero-shot models tend to lean towards text classification and similarity assessment, providing more general and less detailed summaries. Additionally, we assess the correlation between 14 intrinsic automatic metrics and human judgments. Intrinsic metrics perform well in evaluating summaries for question answering but are less effective in the other two tasks. This highlights the limitations of relying solely on intrinsic metrics for assessing summary performance and usefulness.
Despite advances in large pre-trained neural language models, they are prone to generating toxic language, which brings security risks to their applications. We introduce MIL-Decoding, which detoxifies language models at token-level by interpolating it with a trained multiple instance learning (MIL) network.MIL model is trained on a corpus with a toxicity label for each text to predict the overall toxicity and the toxicity of each token in its context. Intuitively, the MIL network computes a toxicity distribution over next tokens according to the generated context which supplements the original language model to avoid toxicity. We evaluate MIL-Decoding with automatic metrics and human evaluation, where MIL-Decoding outperforms other baselines in detoxification while it only hurts generation fluency a little bit.
Sentence Simplification is a valuable technique that can benefit language learners and children a lot. However, current research focuses more on English sentence simplification. The development of Chinese sentence simplification is relatively slow due to the lack of data. To alleviate this limitation, this paper introduces CSS, a new dataset for assessing sentence simplification in Chinese. We collect manual simplifications from human annotators and perform data analysis to show the difference between English and Chinese sentence simplifications. Furthermore, we test several unsupervised and zero/few-shot learning methods on CSS and analyze the automatic evaluation and human evaluation results. In the end, we explore whether Large Language Models can serve as high-quality Chinese sentence simplification systems by evaluating them on CSS.
Factuality is important to dialogue summarization. Factual error correction (FEC) of model-generated summaries is one way to improve factuality. Current FEC evaluation that relies on factuality metrics is not reliable and detailed enough. To address this problem, we are the first to manually annotate a FEC dataset for dialogue summarization containing 4000 items and propose FERRANTI, a fine-grained evaluation framework based on reference correction that automatically evaluates the performance of FEC models on different error categories. Using this evaluation framework, we conduct sufficient experiments with FEC approaches under a variety of settings and find the best training modes and significant differences in the performance of the existing approaches on different factual error categories.
Randomly masking text spans in ordinary texts in the pre-training stage hardly allows models to acquire the ability to generate simple texts. It can hurt the performance of pre-trained models on text simplification tasks. In this paper, we propose a new continued pre-training strategy to teach the pre-trained model to generate simple texts. We continue pre-training BART, a representative model, to obtain SimpleBART. It consistently and significantly improves the results on lexical simplification, sentence simplification, and document-level simplification tasks over BART. At the end, we compare SimpleBART with several representative large language models (LLMs).
Cross-lingual summarization aims to help people efficiently grasp the core idea of the document written in a foreign language. Modern text summarization models generate highly fluent but often factually inconsistent outputs, which has received heightened attention in recent research. However, the factual consistency of cross-lingual summarization has not been investigated yet. In this paper, we propose a cross-lingual factuality dataset by collecting human annotations of reference summaries as well as generated summaries from models at both summary level and sentence level. Furthermore, we perform the fine-grained analysis and observe that over 50% of generated summaries and over 27% of reference summaries contain factual errors with characteristics different from monolingual summarization. Existing evaluation metrics for monolingual summarization require translation to evaluate the factuality of cross-lingual summarization and perform differently at different tasks and levels. Finally, we adapt the monolingual factuality metrics as an initial step towards the automatic evaluation of summarization factuality in cross-lingual settings. Our dataset and code are available at https://github.com/kite99520/Fact_CLS.
The task of news image captioning aims to generate a detailed caption which describes the specific information of an image in a news article. However, we find that recent state-of-art models can achieve competitive performance even without vision features. To resolve the impact of vision features in the news image captioning task, we conduct extensive experiments with mainstream models based on encoder-decoder framework. From our exploration, we find 1) vision features do contribute to the generation of news image captions; 2) vision features can assist models to better generate entities of captions when the entity information is sufficient in the input textual context of the given article; 3) Regions of specific objects in images contribute to the generation of related entities in captions.
Large Language Models (LLMs) have shown their ability to collaborate effectively with humans in real-world scenarios. However, LLMs are apt to generate hallucinations, i.e., makeup incorrect text and unverified information, which can cause significant damage when deployed for mission-critical tasks. In this paper, we propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion. To facilitate future studies and assess different methods, we construct a hallucination detection benchmark named PHD, which is generated by ChatGPT and annotated by human annotators. Contrasting previous studies of zero-resource hallucination detection, our method and benchmark concentrate on passage-level detection instead of sentence-level. We empirically evaluate our method and existing zero-resource detection methods on two datasets. The experimental results demonstrate that the proposed method considerably outperforms the baselines while costing fewer tokens and less time. Furthermore, we manually analyze some hallucination cases that LLM failed to capture, revealing the shared limitation of zero-resource methods.
With the wide use of automatic speech recognition(ASR) systems, researchers pay more attention to the ASR error correction task to improve the quality of recognition results. In particular, ASR in bilingual or multilingual settings, namely code-switching ASR, has greater challenges and research value. In this paper, we first present code-switching ASR correction datasets obtained from solid ASR systems and automatic annotators. The datasets contain Chinese-English code-switching dialogues of bilingual speakers in Singapore, Malaysia, and Hong Kong. Based on this task, we propose a controllable iterative (CI) data augmentation method for improving the performance of mainstream ASR error correction systems. With a small amount of training data, our proposed method has the ability to iteratively produce abundant pseudo parallel data from the monolingual corpus for Chinese-English code-switching ASR correction. Results of experiments show that our method achieves the best performance compared with the rule-based, back-translation-based data augmentation methods and large language model ChatGPT.
Previous studies on machine translation evaluation mostly focused on the quality of individual sentences, while overlooking the important role of contextual information. Although WMT Metrics Shared Tasks have introduced context content into the human annotations of translation evaluation since 2019, the relevant metrics and methods still did not take advantage of the corresponding context. In this paper, we propose a context-aware machine translation evaluation metric called Cont-COMET, built upon the effective COMET framework. Our approach simultaneously considers the preceding and subsequent contexts of the sentence to be evaluated and trains our metric to be aligned with the setting during human annotation. We also introduce a content selection method to extract and utilize the most relevant information. The experiments and evaluation of Cont-COMET on the official test framework from WMT show improvements in both system-level and segment-level assessments.
With the rapid development of NLP, large-scale language models (LLMs) excel in various tasks across multiple domains now. However, existing benchmarks may not adequately measure these models’ capabilities, especially when faced with new knowledge. In this paper, we address the lack of benchmarks to evaluate LLMs’ ability to handle new knowledge, an important and challenging aspect in the rapidly evolving world. We propose an approach called KnowGen that generates new knowledge by altering existing entity attributes and relationships, resulting in artificial entities that are distinct from real-world entities. With KnowGen, we introduce a benchmark named ALCUNA to assess LLMs’ abilities in knowledge understanding, differentiation, and association. We benchmark several LLMs, reveals that their performance in face of new knowledge is not satisfactory, particularly in reasoning between new and internal knowledge. We also explore the impact of entity similarity on the model’s understanding of entity knowledge and the influence of contextual entities. We appeal to the need for caution when using LLMs in new scenarios or with new knowledge, and hope that our benchmarks can help drive the development of LLMs in face of new knowledge.
Video captioning aims to describe events in a video with natural language. In recent years, many works have focused on improving captioning models’ performance. However, like other text generation tasks, it risks introducing factual errors not supported by the input video. Factual errors can seriously affect the quality of the generated text, sometimes making it completely unusable. Although factual consistency has received much research attention in text-to-text tasks (e.g., summarization), it is less studied in vision-based text generation. In this work, we conduct the first human evaluation of the factuality in video captioning and annotate two factuality datasets. We find that 56% of the model-generated sentences have factual errors, indicating it is a severe problem in this field, but existing evaluation metrics show little correlation with human factuality annotation. We further propose a weakly-supervised, model-based factuality metric FactVC, which outperforms previous metrics on factuality evaluation of video captioning.
Neural machine translation has achieved great success in the past few years with the help of transformer architectures and large-scale bilingual corpora. However, when the source text gradually grows into an entire document, the performance of current methods for document-level machine translation (DocMT) is less satisfactory. Although the context is beneficial to the translation in general, it is difficult for traditional methods to utilize such long-range information. Previous studies on DocMT have concentrated on extra contents such as multiple surrounding sentences and input instances divided by a fixed length. We suppose that they ignore the structure inside the source text, which leads to under-utilization of the context. In this paper, we present a more sound paragraph-to-paragraph translation mode and explore whether discourse structure can improve DocMT. We introduce several methods from different perspectives, among which our RST-Att model with a multi-granularity attention mechanism based on the RST parsing tree works best. The experiments show that our method indeed utilizes discourse information and performs better than previous work.
One of the major problems with text simplification is the lack of high-quality data. The sources of simplification datasets are limited to Wikipedia and Newsela, restricting further development of this field. In this paper, we analyzed the similarity between text summarization and text simplification and exploited summarization data to help simplify. First, we proposed an alignment algorithm to extract sentence pairs from summarization datasets. Then, we designed four attributes to characterize the degree of simplification and proposed a method to filter suitable pairs. We named these pairs Sum4Simp (S4S). Next, we conducted human evaluations to show that S4S is high-quality and compared it with a real simplification dataset. Finally, we conducted experiments to illustrate that the S4S can improve the performance of several mainstream simplification models, especially in low-resource scenarios.
This paper reports a reproduction study of the human evaluation of role-oriented dialogue summarization models, as part of the ReproNLP Shared Task 2023 on Reproducibility of Evaluations in NLP. We outline the disparities between the original study’s experimental design and our reproduction study, along with the outcomes obtained. The inter-annotator agreement within the reproduction study is observed to be lower, measuring 0.40 as compared to the original study’s 0.48. Among the six conclusions drawn in the original study, four are validated in our reproduction study. We confirm the effectiveness of the proposed approach on the overall metric, albeit with slightly poorer relative performance compared to the original study. Furthermore, we raise an open-ended inquiry: how can subjective practices in the original study be identified and addressed when conducting reproduction studies?
We report our efforts in identifying a set of previous human evaluations in NLP that would be suitable for a coordinated study examining what makes human evaluations in NLP more/less reproducible. We present our results and findings, which include that just 13% of papers had (i) sufficiently low barriers to reproduction, and (ii) enough obtainable information, to be considered for reproduction, and that all but one of the experiments we selected for reproduction was discovered to have flaws that made the meaningfulness of conducting a reproduction questionable. As a result, we had to change our coordinated study design from a reproduce approach to a standardise-then-reproduce-twice approach. Our overall (negative) finding that the great majority of human evaluations in NLP is not repeatable and/or not reproducible and/or too flawed to justify reproduction, paints a dire picture, but presents an opportunity for a rethink about how to design and report human evaluations in NLP.
k-nearest-neighbor machine translation (kNN-MT), proposed by Khandelwal et al. (2021), has achieved many state-of-the-art results in machine translation tasks. Although effective, kNN-MT requires conducting kNN searches through the large datastore for each decoding step during inference, prohibitively increasing the decoding cost and thus leading to the difficulty for the deployment in real-world applications. In this paper, we propose to move the time-consuming kNN search forward to the preprocessing phase, and then introduce k Nearest Neighbor Knowledge Distillation (kNN-KD) that trains the base NMT model to directly learn the knowledge of kNN. Distilling knowledge retrieved by kNN can encourage the NMT model to take more reasonable target tokens into consideration, thus addressing the overcorrection problem. Extensive experimental results show that, the proposed method achieves consistent improvement over the state-of-the-art baselines including kNN-MT, while maintaining the same training and decoding speed as the standard NMT model.
Dialogue summarization is receiving increasing attention from researchers due to its extraordinary difficulty and unique application value. We observe that current dialogue summarization models have flaws that may not be well exposed by frequently used metrics such as ROUGE. In our paper, we re-evaluate 18 categories of metrics in terms of four dimensions: coherence, consistency, fluency and relevance, as well as a unified human evaluation of various models for the first time. Some noteworthy trends which are different from the conventional summarization tasks are identified. We will release DialSummEval, a multi-faceted dataset of human judgments containing the outputs of 14 models on SAMSum.
Despite being a common figure of speech, hyperbole is under-researched in Figurative Language Processing. In this paper, we tackle the challenging task of hyperbole generation to transfer a literal sentence into its hyperbolic paraphrase. To address the lack of available hyperbolic sentences, we construct HYPO-XL, the first large-scale English hyperbole corpus containing 17,862 hyperbolic sentences in a non-trivial way. Based on our corpus, we propose an unsupervised method for hyperbole generation that does not require parallel literal-hyperbole pairs. During training, we fine-tune BART to infill masked hyperbolic spans of sentences from HYPO-XL. During inference, we mask part of an input literal sentence and over-generate multiple possible hyperbolic versions. Then a BERT-based ranker selects the best candidate by hyperbolicity and paraphrase quality. Automatic and human evaluation results show that our model is effective at generating hyperbolic paraphrase sentences and outperforms several baseline systems.
With the rapid development of deep learning, Seq2Seq paradigm has become prevalent for end-to-end data-to-text generation, and the BLEU scores have been increasing in recent years. However, it is widely recognized that there is still a gap between the quality of the texts generated by models and the texts written by human. In order to better understand the ability of Seq2Seq models, evaluate their performance and analyze the results, we choose to use Multidimensional Quality Metric(MQM) to evaluate several representative Seq2Seq models on end-to-end data-to-text generation. We annotate the outputs of five models on four datasets with eight error types and find that 1) copy mechanism is helpful for the improvement in Omission and Inaccuracy Extrinsic errors but it increases other types of errors such as Addition; 2) pre-training techniques are highly effective, and pre-training strategy and model size are very significant; 3) the structure of the dataset also influences the model’s performance greatly; 4) some specific types of errors are generally challenging for seq2seq models.
Various models have been proposed to incorporate knowledge of syntactic structures into neural language models. However, previous works have relied heavily on elaborate components for a specific language model, usually recurrent neural network (RNN), which makes themselves unwieldy in practice to fit into other neural language models, such as Transformer and GPT-2. In this paper, we introduce the Dependency-based Mixture Language Models. In detail, we first train neural language models with a novel dependency modeling objective to learn the probability distribution of future dependent tokens given context. We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention. Extensive experiments and human evaluations show that our method can be easily and effectively applied to different neural language models while improving neural text generation on various tasks.
Abstractive dialogue summarization has recently been receiving more attention. We propose a coarse-to-fine model for generating abstractive dialogue summaries, and introduce a fact-aware reinforcement learning (RL) objective that improves the fact consistency between the dialogue and the generated summary. Initially, the model generates the predicate-argument spans of the dialogue, and then generates the final summary through a fact-aware RL objective. Extensive experiments and analysis on two benchmark datasets demonstrate that our proposed method effectively improves the quality of the generated summary, especially in coherence and consistency.
Zero-shot paraphrase generation has drawn much attention as the large-scale high-quality paraphrase corpus is limited. Back-translation, also known as the pivot-based method, is typical to this end. Several works leverage different information as ”pivot” such as language, semantic representation and so on. In this paper, we explore using visual information such as image as the ”pivot” of back-translation. Different with the pipeline back-translation method, we propose visual information guided zero-shot paraphrase generation (ViPG) based only on paired image-caption data. It jointly trains an image captioning model and a paraphrasing model and leverage the image captioning model to guide the training of the paraphrasing model. Both automatic evaluation and human evaluation show our model can generate paraphrase with good relevancy, fluency and diversity, and image is a promising kind of pivot for zero-shot paraphrase generation.
Neural text generation models are likely to suffer from the low-diversity problem. Various decoding strategies and training-based methods have been proposed to promote diversity only by exploiting contextual features, but rarely do they consider incorporating syntactic structure clues. In this work, we propose using linguistic annotation, i.e., part-of-speech (POS), to guide the text generation. In detail, we introduce POS Guided Softmax to explicitly model two posterior probabilities: (i) next-POS, and (ii) next-token from the vocabulary of the target POS. A POS Guided Sampling strategy is further proposed to address the low-diversity problem by enriching the diversity of POS. Extensive experiments and human evaluations show that, compared with existing state-of-the-art methods, our POS Guided Softmax and Sampling (POSG) can generate more diverse text while maintaining comparable quality.
Video paragraph captioning aims to generate a set of coherent sentences to describe a video that contains several events. Most previous methods simplify this task by using ground-truth event segments. In this work, we propose a novel framework by taking this task as a text summarization task. We first generate lots of sentence-level captions focusing on different video clips and then summarize these captions to obtain the final paragraph caption. Our method does not depend on ground-truth event segments. Experiments on two popular datasets ActivityNet Captions and YouCookII demonstrate the advantages of our new framework. On the ActivityNet dataset, our method even outperforms some previous methods using ground-truth event segment labels.
Neural machine translation (NMT) models are data-driven and require large-scale training corpus. In practical applications, NMT models are usually trained on a general domain corpus and then fine-tuned by continuing training on the in-domain corpus. However, this bears the risk of catastrophic forgetting that the performance on the general domain is decreased drastically. In this work, we propose a new continual learning framework for NMT models. We consider a scenario where the training is comprised of multiple stages and propose a dynamic knowledge distillation technique to alleviate the problem of catastrophic forgetting systematically. We also find that the bias exists in the output linear projection when fine-tuning on the in-domain corpus, and propose a bias-correction module to eliminate the bias. We conduct experiments on three representative settings of NMT application. Experimental results show that the proposed method achieves superior performance compared to baseline models in all settings.
In this work, we present a phenomenon-oriented comparative analysis of the two dominant approaches in English Resource Semantic (ERS) parsing: classic, knowledge-intensive and neural, data-intensive models. To reflect state-of-the-art neural NLP technologies, a factorization-based parser is introduced that can produce Elementary Dependency Structures much more accurately than previous data-driven parsers. We conduct a suite of tests for different linguistic phenomena to analyze the grammatical competence of different parsers, where we show that, despite comparable performance overall, knowledge- and data-intensive models produce different types of errors, in a way that can be explained by their theoretical properties. This analysis is beneficial to in-depth evaluation of several representative parsing techniques and leads to new directions for parser development.
We propose ParaSCI, the first large-scale paraphrase dataset in the scientific field, including 33,981 paraphrase pairs from ACL (ParaSCI-ACL) and 316,063 pairs from arXiv (ParaSCI-arXiv). Digging into characteristics and common patterns of scientific papers, we construct this dataset though intra-paper and inter-paper methods, such as collecting citations to the same paper or aggregating definitions by scientific terms. To take advantage of sentences paraphrased partially, we put up PDBERT as a general paraphrase discovering method. The major advantages of paraphrases in ParaSCI lie in the prominent length and textual diversity, which is complementary to existing paraphrase datasets. ParaSCI obtains satisfactory results on human evaluation and downstream tasks, especially long paraphrase generation.
Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper, we explore the task of document-level paraphrase generation for the first time and focus on the inter-sentence diversity by considering sentence rewriting and reordering. We propose CoRPG (Coherence Relationship guided Paraphrase Generation), which leverages graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence, which can be used for re-arranging the multiple (possibly modified) input sentences. We create a pseudo document-level paraphrase dataset for training CoRPG. Automatic evaluation results show CoRPG outperforms several strong baseline models on the BERTScore and diversity scores. Human evaluation also shows our model can generate document paraphrase with more diversity and semantic preservation.
We propose CodeQA, a free-form question answering dataset for the purpose of source code comprehension: given a code snippet and a question, a textual answer is required to be generated. CodeQA contains a Java dataset with 119,778 question-answer pairs and a Python dataset with 70,085 question-answer pairs. To obtain natural and faithful questions and answers, we implement syntactic rules and semantic analysis to transform code comments into question-answer pairs. We present the construction process and conduct systematic analysis of our dataset. Experiment results achieved by several neural baselines on our dataset are shown and discussed. While research on question-answering and machine reading comprehension develops rapidly, few prior work has drawn attention to code question answering. This new dataset can serve as a useful research benchmark for source code comprehension.
Paraphrases refer to texts that convey the same meaning with different expression forms. Pivot-based methods, also known as the round-trip translation, have shown promising results in generating high-quality paraphrases. However, existing pivot-based methods all rely on language as the pivot, where large-scale, high-quality parallel bilingual texts are required. In this paper, we explore the feasibility of using semantic and syntactic representations as the pivot for paraphrase generation. Concretely, we transform a sentence into a variety of different semantic or syntactic representations (including AMR, UD, and latent semantic representation), and then decode the sentence back from the semantic representations. We further explore a pretraining-based approach to compress the pipeline process into an end-to-end framework. We conduct experiments comparing different approaches with different kinds of pivots. Experimental results show that taking AMR as pivot can obtain paraphrases with better quality than taking language as the pivot. The end-to-end framework can reduce semantic shift when language is used as the pivot. Besides, several unsupervised pivot-based methods can generate paraphrases with similar quality as the supervised sequence-to-sequence model, which indicates that parallel data of paraphrases may not be necessary for paraphrase generation.
Text simplification is a valuable technique. However, current research is limited to sentence simplification. In this paper, we define and investigate a new task of document-level text simplification, which aims to simplify a document consisting of multiple sentences. Based on Wikipedia dumps, we first construct a large-scale dataset named D-Wikipedia and perform analysis and human evaluation on it to show that the dataset is reliable. Then, we propose a new automatic evaluation metric called D-SARI that is more suitable for the document-level simplification task. Finally, we select several representative models as baseline models for this task and perform automatic evaluation and human evaluation. We analyze the results and point out the shortcomings of the baseline models.
Most of the research on text simplification is limited to sentence level nowadays. In this paper, we are the first to investigate the helpfulness of document context on sentence simplification and apply it to the sequence-to-sequence model. We firstly construct a sentence simplification dataset in which the contexts for the original sentence are provided by Wikipedia corpus. The new dataset contains approximately 116K sentence pairs with context. We then propose a new model that makes full use of the context information. Our model uses neural networks to learn the different effects of the preceding sentences and the following sentences on the current sentence and applies them to the improved transformer model. Evaluated on the newly constructed dataset, our model achieves 36.52 on SARI value, which outperforms the best performing model in the baselines by 2.46 (7.22%), indicating that context indeed helps improve sentence simplification. In the ablation experiment, we show that using either the preceding sentences or the following sentences as context can significantly improve simplification.
The incorporation of data augmentation method in grammatical error correction task has attracted much attention. However, existing data augmentation methods mainly apply noise to tokens, which leads to the lack of diversity of generated errors. In view of this, we propose a new data augmentation method that can apply noise to the latent representation of a sentence. By editing the latent representations of grammatical sentences, we can generate synthetic samples with various error types. Combining with some pre-defined rules, our method can greatly improve the performance and robustness of existing grammatical error correction models. We evaluate our method on public benchmarks of GEC task and it achieves the state-of-the-art performance on CoNLL-2014 and FCE benchmarks.
Traditional Question Generation (TQG) aims to generate a question given an input passage and an answer. When there is a sequence of answers, we can perform Sequential Question Generation (SQG) to produce a series of interconnected questions. Since the frequently occurred information omission and coreference between questions, SQG is rather challenging. Prior works regarded SQG as a dialog generation task and recurrently produced each question. However, they suffered from problems caused by error cascades and could only capture limited context dependencies. To this end, we generate questions in a semi-autoregressive way. Our model divides questions into different groups and generates each group of them in parallel. During this process, it builds two graphs focusing on information from passages, answers respectively and performs dual-graph interaction to get information for generation. Besides, we design an answer-aware attention mechanism and the coarse-to-fine generation scenario. Experiments on our new dataset containing 81.9K questions show that our model substantially outperforms prior works.
Multimodal Machine Translation (MMT) aims to introduce information from other modality, generally static images, to improve the translation quality. Previous works propose various incorporation methods, but most of them do not consider the relative importance of multiple modalities. Equally treating all modalities may encode too much useless information from less important modalities. In this paper, we introduce the multimodal self-attention in Transformer to solve the issues above in MMT. The proposed method learns the representation of images based on the text, which avoids encoding irrelevant information in images. Experiments and visualization analysis demonstrate that our model benefits from visual information and substantially outperforms previous works and competitive baselines in terms of various metrics.
In this paper, we study the challenging problem of automatic generation of citation texts in scholarly papers. Given the context of a citing paper A and a cited paper B, the task aims to generate a short text to describe B in the given context of A. One big challenge for addressing this task is the lack of training data. Usually, explicit citation texts are easy to extract, but it is not easy to extract implicit citation texts from scholarly papers. We thus first train an implicit citation extraction model based on BERT and leverage the model to construct a large training dataset for the citation text generation task. Then we propose and train a multi-source pointer-generator network with cross attention mechanism for citation text generation. Empirical evaluation results on a manually labeled test dataset verify the efficacy of our model. This pilot study confirms the feasibility of automatically generating citation texts in scholarly papers and the technique has the great potential to help researchers prepare their scientific papers.
Cross-lingual summarization is the task of generating a summary in one language given a text in a different language. Previous works on cross-lingual summarization mainly focus on using pipeline methods or training an end-to-end model using the translated parallel data. However, it is a big challenge for the model to directly learn cross-lingual summarization as it requires learning to understand different languages and learning how to summarize at the same time. In this paper, we propose to ease the cross-lingual summarization training by jointly learning to align and summarize. We design relevant loss functions to train this framework and propose several methods to enhance the isomorphism and cross-lingual transfer between languages. Experimental results show that our model can outperform competitive models in most cases. In addition, we show that our model even has the ability to generate cross-lingual summaries without access to any cross-lingual corpus.
In this paper, we propose a multi-granularity interaction network for extractive and abstractive multi-document summarization, which jointly learn semantic representations for words, sentences, and documents. The word representations are used to generate an abstractive summary while the sentence representations are used to produce an extractive summary. We employ attention mechanisms to interact between different granularity of semantic representations, which helps to capture multi-granularity key information and improves the performance of both abstractive and extractive summarization. Experiment results show that our proposed model substantially outperforms all strong baseline methods and achieves the best results on the Multi-News dataset.
This paper is concerned with semantic parsing for English as a second language (ESL). Motivated by the theoretical emphasis on the learning challenges that occur at the syntax-semantics interface during second language acquisition, we formulate the task based on the divergence between literal and intended meanings. We combine the complementary strengths of English Resource Grammar, a linguistically-precise hand-crafted deep grammar, and TLE, an existing manually annotated ESL UD-TreeBank with a novel reranking model. Experiments demonstrate that in comparison to human annotations, our method can obtain a very promising SemBanking quality. By means of the newly created corpus, we evaluate state-of-the-art semantic parsing as well as grammatical error correction models. The evaluation profiles the performance of neural NLP techniques for handling ESL data and suggests some research directions.
The graph-to-sequence (Graph2Seq) learning aims to transduce graph-structured representations to word sequences for text generation. Recent studies propose various models to encode graph structure. However, most previous works ignore the indirect relations between distance nodes, or treat indirect relations and direct relations in the same way. In this paper, we propose the Heterogeneous Graph Transformer to independently model the different relations in the individual subgraphs of the original graph, including direct relations, indirect relations and multiple possible relations between nodes. Experimental results show that our model strongly outperforms the state of the art on all four standard benchmarks of AMR-to-text generation and syntax-based neural machine translation.
Abstract meaning representation (AMR)-to-text generation is the challenging task of generating natural language texts from AMR graphs, where nodes represent concepts and edges denote relations. The current state-of-the-art methods use graph-to-sequence models; however, they still cannot significantly outperform the previous sequence-to-sequence models or statistical approaches. In this paper, we propose a novel graph-to-sequence model (Graph Transformer) to address this task. The model directly encodes the AMR graphs and learns the node representations. A pairwise interaction function is used for computing the semantic relations between the concepts. Moreover, attention mechanisms are used for aggregating the information from the incoming and outgoing neighbors, which help the model to capture the semantic information effectively. Our model outperforms the state-of-the-art neural approach by 1.5 BLEU points on LDC2015E86 and 4.8 BLEU points on LDC2017T10 and achieves new state-of-the-art performances.
In this paper, we propose a sequence contrast loss driven text generation framework, which learns the difference between real texts and generated texts and uses that difference. Specifically, our discriminator contains a discriminative sequence generator instead of a binary classifier, and measures the ‘relative realism’ of generated texts against real texts by making use of them simultaneously. Moreover, our generator uses discriminative sequences to directly improve itself, which not only replaces the gradient propagation process from the discriminator to the generator, but also avoids the time-consuming sampling process of estimating rewards in some previous methods. We conduct extensive experiments with various metrics, substantiating that our framework brings improvements in terms of training stability and the quality of generated texts.
Paraphrases refer to texts that convey the same meaning with different expression forms. Traditional seq2seq-based models on paraphrase generation mainly focus on the fidelity while ignoring the diversity of outputs. In this paper, we propose a deep generative model to generate diverse paraphrases. We build our model based on the conditional generative adversarial network, and propose to incorporate a simple yet effective diversity loss term into the model in order to improve the diversity of outputs. The proposed diversity loss maximizes the ratio of pairwise distance between the generated texts and their corresponding latent codes, forcing the generator to focus more on the latent codes and produce diverse samples. Experimental results on benchmarks of paraphrase generation show that our proposed model can generate more diverse paraphrases compared with baselines.
Single-document and multi-document summarizations are very closely related in both task definition and solution method. In this work, we propose to improve neural abstractive multi-document summarization by jointly learning an abstractive single-document summarizer. We build a unified model for single-document and multi-document summarizations by fully sharing the encoder and decoder and utilizing a decoding controller to aggregate the decoder’s outputs for multiple input documents. We evaluate our model on two multi-document summarization datasets: Multi-News and DUC-04. Experimental results show the efficacy of our approach, and it can substantially outperform several strong baselines. We also verify the helpfulness of single-document summarization to abstractive multi-document summarization task.
Punning is a creative way to make conversation enjoyable and literary writing elegant. In this paper, we focus on the task of generating a pun sentence given a pair of homophones. We first find the constraint words supporting the semantic incongruity for a sentence. Then we rewrite the sentence with explicit positive and negative constraints. Our model achieves the state-of-the-art results in both automatic and human evaluations. We further make an error analysis and discuss the challenges for the computational pun models.
One of the most challenging part of recipe generation is to deal with the complex restrictions among the input ingredients. Previous researches simplify the problem by treating the inputs independently and generating recipes containing as much information as possible. In this work, we propose a routing method to dive into the content selection under the internal restrictions. The routing enforced generative model (RGM) can generate appropriate recipes according to the given ingredients and user preferences. Our model yields new state-of-the-art results on the recipe generation task with significant improvements on BLEU, F1 and human evaluation.
Context-dependent text-to-SQL task has drawn much attention in recent years. Previous models on context-dependent text-to-SQL task only concentrate on utilizing historic user inputs. In this work, in addition to using encoders to capture historic information of user inputs, we propose a database schema interaction graph encoder to utilize historic information of database schema items. In decoding phase, we introduce a gate mechanism to weigh the importance of different vocabularies and then make the prediction of SQL tokens. We evaluate our model on the benchmark SParC and CoSQL datasets, which are two large complex context-dependent cross-domain text-to-SQL datasets. Our model outperforms previous state-of-the-art model by a large margin and achieves new state-of-the-art results on the two datasets. The comparison and ablation results demonstrate the efficacy of our model and the usefulness of the database schema interaction graph encoder.
Sarcasm is a subtle form of language in which people express the opposite of what is implied. Previous works of sarcasm detection focused on texts. However, more and more social media platforms like Twitter allow users to create multi-modal messages, including texts, images, and videos. It is insufficient to detect sarcasm from multi-model messages based only on texts. In this paper, we focus on multi-modal sarcasm detection for tweets consisting of texts and images in Twitter. We treat text features, image features and image attributes as three modalities and propose a multi-modal hierarchical fusion model to address this task. Our model first extracts image features and attribute features, and then leverages attribute features and bidirectional LSTM network to extract text features. Features of three modalities are then reconstructed and fused into one feature vector for prediction. We create a multi-modal sarcasm detection dataset based on Twitter. Evaluation results on the dataset demonstrate the efficacy of our proposed model and the usefulness of the three modalities.
Teaching machines to ask questions is an important yet challenging task. Most prior work focused on generating questions with fixed answers. As contents are highly limited by given answers, these questions are often not worth discussing. In this paper, we take the first step on teaching machines to ask open-answered questions from real-world news for open discussion (openQG). To generate high-qualified questions, effective ways for question evaluation are required. We take the perspective that the more answers a question receives, the better it is for open discussion, and analyze how language use affects the number of answers. Compared with other factors, e.g. topic and post time, linguistic factors keep our evaluation from being domain-specific. We carefully perform variable control on 11.5M questions from online forums to get a dataset, OQRanD, and further perform question analysis. Based on these conclusions, several models are built for question evaluation. For openQG task, we construct OQGenD, the first dataset as far as we know, and propose a model based on conditional generative adversarial networks and our question evaluation model. Experiments show that our model can generate questions with higher quality compared with commonly-used text generation methods.
In this paper, we explore a new approach for automated chess commentary generation, which aims to generate chess commentary texts in different categories (e.g., description, comparison, planning, etc.). We introduce a neural chess engine into text generation models to help with encoding boards, predicting moves, and analyzing situations. By jointly training the neural chess engine and the generation models for different categories, the models become more effective. We conduct experiments on 5 categories in a benchmark Chess Commentary dataset and achieve inspiring results in both automatic and human evaluations.
Sentiment analysis in low-resource languages suffers from the lack of training data. Cross-lingual sentiment analysis (CLSA) aims to improve the performance on these languages by leveraging annotated data from other languages. Recent studies have shown that CLSA can be performed in a fully unsupervised manner, without exploiting either target language supervision or cross-lingual supervision. However, these methods rely heavily on unsupervised cross-lingual word embeddings (CLWE), which has been shown to have serious drawbacks on distant language pairs (e.g. English - Japanese). In this paper, we propose an end-to-end CLSA model by leveraging unlabeled data in multiple languages and multiple domains and eliminate the need for unsupervised CLWE. Our model applies to two CLSA settings: the traditional cross-lingual in-domain setting and the more challenging cross-lingual cross-domain setting. We empirically evaluate our approach on the multilingual multi-domain Amazon review dataset. Experimental results show that our model outperforms the baselines by a large margin despite its minimal resource requirement.
Word embeddings learned in two languages can be mapped to a common space to produce Bilingual Word Embeddings (BWE). Unsupervised BWE methods learn such a mapping without any parallel data. However, these methods are mainly evaluated on tasks of word translation or word similarity. We show that these methods fail to capture the sentiment information and do not perform well enough on cross-lingual sentiment analysis. In this work, we propose UBiSE (Unsupervised Bilingual Sentiment Embeddings), which learns sentiment-specific word representations for two languages in a common space without any cross-lingual supervision. Our method only requires a sentiment corpus in the source language and pretrained monolingual word embeddings of both languages. We evaluate our method on three language pairs for cross-lingual sentiment analysis. Experimental results show that our method outperforms previous unsupervised BWE methods and even supervised BWE methods. Our method succeeds for a distant language pair English-Basque.
Metaphor generation attempts to replicate human creativity with language, which is an attractive but challengeable text generation task. Previous efforts mainly focus on template-based or rule-based methods and result in a lack of linguistic subtlety. In order to create novel metaphors, we propose a neural approach to metaphor generation and explore the shared inferential structure of a metaphorical usage and a literal usage of a verb. Our approach does not require any manually annotated metaphors for training. We extract the metaphorically used verbs with their metaphorical senses in an unsupervised way and train a neural language model from wiki corpus. Then we generate metaphors conveying the assigned metaphorical senses with an improved decoding algorithm. Automatic metrics and human evaluations demonstrate that our approach can generate metaphors with good readability and creativity.
Nowadays, we are surrounded by more and more online news articles. Tens or hundreds of news articles need to be read if we wish to explore a hot news event or topic. So it is of vital importance to automatically synthesize a batch of news articles related to the event or topic into a new synthesis article (or overview article) for reader’s convenience. It is so challenging to make news synthesis fully automatic that there is no successful solution by now. In this paper, we put forward a novel Interactive News Synthesis system (i.e. INS), which can help generate news overview articles automatically or by interacting with users. More importantly, INS can serve as a tool for editors to help them finish their jobs. In our experiments, INS performs well on both topic representation and synthesis article generation. A user study also demonstrates the usefulness and users’ satisfaction with the INS tool. A demo video is available at https://youtu.be/7ItteKW3GEk.
We report our work on building linguistic resources and data-driven parsers in the grammatical relation (GR) analysis for Mandarin Chinese. Chinese, as an analytic language, encodes grammatical information in a highly configurational rather than morphological way. Accordingly, it is possible and reasonable to represent almost all grammatical relations as bilexical dependencies. In this work, we propose to represent grammatical information using general directed dependency graphs. Both only-local and rich long-distance dependencies are explicitly represented. To create high-quality annotations, we take advantage of an existing TreeBank, namely, Chinese TreeBank (CTB), which is grounded on the Government and Binding theory. We define a set of linguistic rules to explore CTB’s implicit phrase structural information and build deep dependency graphs. The reliability of this linguistically motivated GR extraction procedure is highlighted by manual evaluation. Based on the converted corpus, data-driven, including graph- and transition-based, models are explored for Chinese GR parsing. For graph-based parsing, a new perspective, graph merging, is proposed for building flexible dependency graphs: constructing complex graphs via constructing simple subgraphs. Two key problems are discussed in this perspective: (1) how to decompose a complex graph into simple subgraphs, and (2) how to combine subgraphs into a coherent complex graph. For transition-based parsing, we introduce a neural parser based on a list-based transition system. We also discuss several other key problems, including dynamic oracle and beam search for neural transition-based parsing. Evaluation gauges how successful GR parsing for Chinese can be by applying data-driven models. The empirical analysis suggests several directions for future study.
We present experiments for cross-domain semantic dependency analysis with a neural Maximum Subgraph parser. Our parser targets 1-endpoint-crossing, pagenumber-2 graphs which are a good fit to semantic dependency graphs, and utilizes an efficient dynamic programming algorithm for decoding. For disambiguation, the parser associates words with BiLSTM vectors and utilizes these vectors to assign scores to candidate dependencies. We conduct experiments on the data sets from SemEval 2015 as well as Chinese CCGBank. Our parser achieves very competitive results for both English and Chinese. To improve the parsing performance on cross-domain texts, we propose a data-oriented method to explore the linguistic generality encoded in English Resource Grammar, which is a precisionoriented, hand-crafted HPSG grammar, in an implicit way. Experiments demonstrate the effectiveness of our data-oriented method across a wide range of conditions.
We demonstrate that an SHRG-based parser can produce semantic graphs much more accurately than previously shown, by relating synchronous production rules to the syntacto-semantic composition process. Our parser achieves an accuracy of 90.35 for EDS (89.51 for DMRS) in terms of elementary dependency match, which is a 4.87 (5.45) point improvement over the best existing data-driven model, indicating, in our view, the importance of linguistically-informed derivation for data-driven semantic parsing. This accuracy is equivalent to that of English Resource Grammar guided models, suggesting that (recurrent) neural network models are able to effectively learn deep linguistic knowledge from annotations.
Automatic pun generation is an interesting and challenging text generation task. Previous efforts rely on templates or laboriously manually annotated pun datasets, which heavily constrains the quality and diversity of generated puns. Since sequence-to-sequence models provide an effective technique for text generation, it is promising to investigate these models on the pun generation task. In this paper, we propose neural network models for homographic pun generation, and they can generate puns without requiring any pun data for training. We first train a conditional neural language model from a general text corpus, and then generate puns from the language model with an elaborately designed decoding algorithm. Automatic and human evaluations show that our models are able to generate homographic puns of good readability and quality.
A DAG automaton is a formal device for manipulating graphs. By augmenting a DAG automaton with transduction rules, a DAG transducer has potential applications in fundamental NLP tasks. In this paper, we propose a novel DAG transducer to perform graph-to-program transformation. The target structure of our transducer is a program licensed by a declarative programming language rather than linguistic structures. By executing such a program, we can easily get a surface string. Our transducer is designed especially for natural language generation (NLG) from type-logical semantic graphs. Taking Elementary Dependency Structures, a format of English Resource Semantics, as input, our NLG system achieves a BLEU-4 score of 68.07. This remarkable result demonstrates the feasibility of applying a DAG transducer to resolve NLG, as well as the effectiveness of our design.
Motivated by the positive impact of empty category on syntactic parsing, we study neural models for pre- and in-parsing detection of empty category, which has not previously been investigated. We find several non-obvious facts: (a) BiLSTM can capture non-local contextual information which is essential for detecting empty categories, (b) even with a BiLSTM, syntactic information is still able to enhance the detection, and (c) automatic detection of empty categories improves parsing quality for overt words. Our neural ECD models outperform the prior state-of-the-art by significant margins.
A homographic pun is a form of wordplay in which one signifier (usually a word) suggests two or more meanings by exploiting polysemy for an intended humorous or rhetorical effect. In this paper, we focus on the task of pun location, which aims to identify the pun word in a given short text. We propose a sense-aware neural model to address this challenging task. Our model first obtains several WSD results for the text, and then leverages a bidirectional LSTM network to model each sequence of word senses. The outputs at each time step for different LSTM networks are then concatenated for prediction. Evaluation results on the benchmark SemEval 2017 dataset demonstrate the efficacy of our proposed model.
The task of data-to-text generation aims to generate descriptive texts conditioned on a number of database records, and recent neural models have shown significant progress on this task. The attention based encoder-decoder models with copy mechanism have achieved state-of-the-art results on a few data-to-text datasets. However, such models still face the problem of putting incorrect data records in the generated texts, especially on some more challenging datasets like RotoWire. In this paper, we propose a two-stage approach with a delayed copy mechanism to improve the precision of data records in the generated texts. Our approach first adopts an encoder-decoder model to generate a template text with data slots to be filled and then leverages a proposed delayed copy mechanism to fill in the slots with proper data records. Our delayed copy mechanism can take into account all the information of the input data records and the full generated template text by using double attention, position-aware attention and a pairwise ranking loss. The two models in the two stages are trained separately. Evaluation results on the RotoWire dataset verify the efficacy of our proposed approach to generate better templates and copy data records more precisely.
Till now, neural abstractive summarization methods have achieved great success for single document summarization (SDS). However, due to the lack of large scale multi-document summaries, such methods can be hardly applied to multi-document summarization (MDS). In this paper, we investigate neural abstractive methods for MDS by adapting a state-of-the-art neural abstractive summarization model for SDS. We propose an approach to extend the neural abstractive model trained on large scale SDS data to the MDS task. Our approach only makes use of a small number of multi-document summaries for fine tuning. Experimental results on two benchmark DUC datasets demonstrate that our approach can outperform a variety of baseline neural models.
This paper studies semantic parsing for interlanguage (L2), taking semantic role labeling (SRL) as a case task and learner Chinese as a case language. We first manually annotate the semantic roles for a set of learner texts to derive a gold standard for automatic SRL. Based on the new data, we then evaluate three off-the-shelf SRL systems, i.e., the PCFGLA-parser-based, neural-parser-based and neural-syntax-agnostic systems, to gauge how successful SRL for learner Chinese can be. We find two non-obvious facts: 1) the L1-sentence-trained systems performs rather badly on the L2 data; 2) the performance drop from the L1 data to the L2 data of the two parser-based systems is much smaller, indicating the importance of syntactic parsing in SRL for interlanguages. Finally, the paper introduces a new agreement-based model to explore the semantic coherency information in the large-scale L2-L1 parallel data. We then show such information is very effective to enhance SRL for learner texts. Our model achieves an F-score of 72.06, which is a 2.02 point improvement over the best baseline.
This paper is concerned with building deep grammatical relation (GR) analysis using data-driven approach. To deal with this problem, we propose graph merging, a new perspective, for building flexible dependency graphs: Constructing complex graphs via constructing simple subgraphs. We discuss two key problems in this perspective: (1) how to decompose a complex graph into simple subgraphs, and (2) how to combine subgraphs into a coherent complex graph. Experiments demonstrate the effectiveness of graph merging. Our parser reaches state-of-the-art performance and is significantly better than two transition-based parsers.
This paper is concerned with whether deep syntactic information can help surface parsing, with a particular focus on empty categories. We design new algorithms to produce dependency trees in which empty elements are allowed, and evaluate the impact of information about empty category on parsing overt elements. Such information is helpful to reduce the approximation error in a structured parsing model, but increases the search space for inference and accordingly the estimation error. To deal with structure-based overfitting, we propose to integrate disambiguation models with and without empty elements, and perform structure regularization via joint decoding. Experiments on English and Chinese TreeBanks with different parsing models indicate that incorporating empty elements consistently improves surface parsing.
In this work we study the challenging task of automatically constructing essays for Chinese college entrance examination where the topic is specified in advance. We explore a sentence extraction framework based on diversified lexical chains to capture coherence and richness. Experimental analysis shows the effectiveness of our approach and reveals the importance of information richness in essay writing.
We propose a new Maximum Subgraph algorithm for first-order parsing to 1-endpoint-crossing, pagenumber-2 graphs. Our algorithm has two characteristics: (1) it separates the construction for noncrossing edges and crossing edges; (2) in a single construction step, whether to create a new arc is deterministic. These two characteristics make our algorithm relatively easy to be extended to incorporiate crossing-sensitive second-order features. We then introduce a new algorithm for quasi-second-order parsing. Experiments demonstrate that second-order features are helpful for Maximum Subgraph parsing.
Existing sentiment classifiers usually work for only one specific language, and different classification models are used in different languages. In this paper we aim to build a universal sentiment classifier with a single classification model in multiple different languages. In order to achieve this goal, we propose to learn multilingual sentiment-aware word embeddings simultaneously based only on the labeled reviews in English and unlabeled parallel data available in a few language pairs. It is not required that the parallel data exist between English and any other language, because the sentiment information can be transferred into any language via pivot languages. We present the evaluation results of our universal sentiment classifier in five languages, and the results are very promising even when the parallel data between English and the target languages are not used. Furthermore, the universal single classifier is compared with a few cross-language sentiment classifiers relying on direct parallel data between the source and target languages, and the results show that the performance of our universal sentiment classifier is very promising compared to that of different cross-language classifiers in multiple target languages.
In this paper we investigate a new task of automatically constructing an overview article from a given set of news articles about a news event. We propose a news synthesis approach to address this task based on passage segmentation, ranking, selection and merging. Our proposed approach is compared with several typical multi-document summarization methods on the Wikinews dataset, and achieves the best performance on both automatic evaluation and manual evaluation.
We study the task of constructing sports news report automatically from live commentary and focus on content selection. Rather than receiving every piece of text of a sports match before news construction, as in previous related work, we novelly verify the feasibility of a more challenging but more useful setting to generate news report on the fly by treating live text input as a stream. Specifically, we design various scoring functions to address different requirements of the task. The near submodularity of scoring functions makes it possible to adapt efficient greedy algorithms even in stream data settings. Experiments suggest that our proposed framework can already produce comparable results compared with previous work that relies on a supervised learning-to-rank model with heavy feature engineering.
Data-to-text generation is very essential and important in machine writing applications. The recent deep learning models, like Recurrent Neural Networks (RNNs), have shown a bright future for relevant text generation tasks. However, rare work has been done for automatic generation of long reviews from user opinions. In this paper, we introduce a deep neural network model to generate long Chinese reviews from aspect-sentiment scores representing users’ opinions. We conduct our study within the framework of encoder-decoder networks, and we propose a hierarchical structure with aligned attention in the Long-Short Term Memory (LSTM) decoder. Experiments show that our model outperforms retrieval based baseline methods, and also beats the sequential generation models in qualitative evaluations.
We model a dependency graph as a book, a particular kind of topological space, for semantic dependency parsing. The spine of the book is made up of a sequence of words, and each page contains a subset of noncrossing arcs. To build a semantic graph for a given sentence, we design new Maximum Subgraph algorithms to generate noncrossing graphs on each page, and a Lagrangian Relaxation-based algorithm tocombine pages into a book. Experiments demonstrate the effectiveness of the bookembedding framework across a wide range of conditions. Our parser obtains comparable results with a state-of-the-art transition-based parser.
Abstractive summarization is the ultimate goal of document summarization research, but previously it is less investigated due to the immaturity of text generation techniques. Recently impressive progress has been made to abstractive sentence summarization using neural models. Unfortunately, attempts on abstractive document summarization are still in a primitive stage, and the evaluation results are worse than extractive methods on benchmark datasets. In this paper, we review the difficulties of neural abstractive document summarization, and propose a novel graph-based attention mechanism in the sequence-to-sequence framework. The intuition is to address the saliency factor of summarization, which has been overlooked by prior works. Experimental results demonstrate our model is able to achieve considerable improvement over previous neural abstractive models. The data-driven neural abstractive method is also competitive with state-of-the-art extractive methods.
We study the Maximum Subgraph problem in deep dependency parsing. We consider two restrictions to deep dependency graphs: (a) 1-endpoint-crossing and (b) pagenumber-2. Our main contribution is an exact algorithm that obtains maximum subgraphs satisfying both restrictions simultaneously in time O(n5). Moreover, ignoring one linguistically-rare structure descreases the complexity to O(n4). We also extend our quartic-time algorithm into a practical parser with a discriminative disambiguation model and evaluate its performance on four linguistic data sets used in semantic dependency parsing.
PKUSUMSUM is a Java platform for multilingual document summarization, and it sup-ports multiple languages, integrates 10 automatic summarization methods, and tackles three typical summarization tasks. The summarization platform has been released and users can easily use and update it. In this paper, we make a brief description of the char-acteristics, the summarization methods, and the evaluation results of the platform, and al-so compare PKUSUMSUM with other summarization toolkits.
We present a comparative study of transition-, graph- and PCFG-based models aimed at illuminating more precisely the likely contribution of CFGs in improving Chinese dependency parsing accuracy, especially by combining heterogeneous models. Inspired by the impact of a constituency grammar on dependency parsing, we propose several strategies to acquire pseudo CFGs only from dependency annotations. Compared to linguistic grammars learned from rich phrase-structure treebanks, well designed pseudo grammars achieve similar parsing accuracy and have equivalent contributions to parser ensemble. Moreover, pseudo grammars increase the diversity of base models; therefore, together with all other models, further improve system combination. Based on automatic POS tagging, our final model achieves a UAS of 87.23%, resulting in a significant improvement of the state of the art.