Xiaolong Huang


2024

pdf bib
Improving Text Embeddings with Large Language Models
Liang Wang | Nan Yang | Xiaolong Huang | Linjun Yang | Rangan Majumder | Furu Wei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps. Unlike existing methods that often depend on multi-stage intermediate pre-training with billions of weakly-supervised text pairs, followed by fine-tuning with a few labeled datasets, our method does not require building complex training pipelines or relying on manually collected datasets that are often constrained by task diversity and language coverage. We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages. We then fine-tune open-source decoder-only LLMs on the synthetic data using standard contrastive loss. Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data. Furthermore, when fine-tuned with a mixture of synthetic and labeled data, our model sets new state-of-the-art results on the BEIR and MTEB benchmarks.

2023

pdf bib
SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
Liang Wang | Nan Yang | Xiaolong Huang | Binxing Jiao | Linjun Yang | Daxin Jiang | Rangan Majumder | Furu Wei
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA (Clark et al., 2020), to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to an unlabeled corpus and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 (Santhanam et al., 2021) which incurs significantly more storage cost. Our code and model checkpoints are available at https://github.com/microsoft/unilm/tree/master/simlm .

2022

pdf bib
Effective and Efficient Query-aware Snippet Extraction for Web Search
Jingwei Yi | Fangzhao Wu | Chuhan Wu | Xiaolong Huang | Binxing Jiao | Guangzhong Sun | Xing Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Query-aware webpage snippet extraction is widely used in search engines to help users better understand the content of the returned webpages before clicking. The extracted snippet is expected to summarize the webpage in the context of the input query. Existing snippet extraction methods mainly rely on handcrafted features of overlapping words, which cannot capture deep semantic relationships between the query and webpages. Another idea is to extract the sentences which are most relevant to queries as snippets with existing text matching methods. However, these methods ignore the contextual information of webpages, which may be sub-optimal. In this paper, we propose an effective query-aware webpage snippet extraction method named DeepQSE. In DeepQSE, the concatenation of title, query and each candidate sentence serves as an input of query-aware sentence encoder, aiming to capture the fine-grained relevance between the query and sentences. Then, these query-aware sentence representations are modeled jointly through a document-aware relevance encoder to capture contextual information of the webpage. Since the query and each sentence are jointly modeled in DeepQSE, its online inference may be slow. Thus, we further propose an efficient version of DeepQSE, named Efficient-DeepQSE, which can significantly improve the inference speed of DeepQSE without affecting its performance. The core idea of Efficient-DeepQSE is to decompose the query-aware snippet extraction task into two stages, i.e., a coarse-grained candidate sentence selection stage where sentence representations can be cached, and a fine-grained relevance modeling stage. Experiments on two datasets validate the effectiveness and efficiency of our methods.