Xiaosu Wang
2023
Adaptive Structure Induction for Aspect-based Sentiment Analysis with Spectral Perspective
Hao Niu
|
Yun Xiong
|
Xiaosu Wang
|
Wenjing Yu
|
Yao Zhang
|
Zhonglei Guo
Findings of the Association for Computational Linguistics: EMNLP 2023
Recently, incorporating structure information (e.g. dependency syntactic tree) can enhance the performance of aspect-based sentiment analysis (ABSA). However, this structure information is obtained from off-the-shelf parsers, which is often sub-optimal and cumbersome. Thus, automatically learning adaptive structures is conducive to solving this problem. In this work, we concentrate on structure induction from pre-trained language models (PLMs) and throw the structure induction into a spectrum perspective to explore the impact of scale information in language representation on structure induction ability. Concretely, the main architecture of our model is composed of commonly used PLMs (e.g. RoBERTa, etc), and a simple yet effective graph structure learning (GSL) module (graph learner + GNNs). Subsequently, we plug in spectral filters with different bands respectively after the PLMs to produce filtered language representations and feed them into the GSL module to induce latent structures. We conduct extensive experiments on three public benchmarks for ABSA. The results and further analyses demonstrate that introducing this spectral approach can shorten Aspects-sentiment Distance (AsD) and be beneficial to structure induction. Even based on such a simple framework, the effects on three datasets can reach SOTA (state of the art) or near SOTA performance. Additionally, our exploration also has the potential to be generalized to other tasks or to bring inspiration to other similar domains.
KeFVP: Knowledge-enhanced Financial Volatility Prediction
Hao Niu
|
Yun Xiong
|
Xiaosu Wang
|
Wenjing Yu
|
Yao Zhang
|
Weizu Yang
Findings of the Association for Computational Linguistics: EMNLP 2023
Financial volatility prediction is vital for indicating a company’s risk profile. Transcripts of companies’ earnings calls are important unstructured data sources to be utilized to access companies’ performance and risk profiles. However, current works ignore the role of financial metrics knowledge (such as EBIT, EPS, and ROI) in transcripts, which is crucial for understanding companies’ performance, and little consideration is given to integrating text and price information. In this work, we statistic common financial metrics and make a special dataset based on these metrics. Then, we introduce a knowledge-enhanced financial volatility prediction method (KeFVP) to inject knowledge of financial metrics into text comprehension by knowledge-enhanced adaptive pre-training (KePt) and effectively incorporating text and price information by introducing a conditional time series prediction module. We conduct extensive experiments on three real-world public datasets, and the results indicate that KeFVP is effective and outperforms all the state-of-the-art methods.
2022
Composition-based Heterogeneous Graph Multi-channel Attention Network for Multi-aspect Multi-sentiment Classification
Hao Niu
|
Yun Xiong
|
Jian Gao
|
Zhongchen Miao
|
Xiaosu Wang
|
Hongrun Ren
|
Yao Zhang
|
Yangyong Zhu
Proceedings of the 29th International Conference on Computational Linguistics
Aspect-based sentiment analysis (ABSA) has drawn more and more attention because of its extensive applications. However, towards the sentence carried with more than one aspect, most existing works generate an aspect-specific sentence representation for each aspect term to predict sentiment polarity, which neglects the sentiment relationship among aspect terms. Besides, most current ABSA methods focus on sentences containing only one aspect term or multiple aspect terms with the same sentiment polarity, which makes ABSA degenerate into sentence-level sentiment analysis. In this paper, to deal with this problem, we construct a heterogeneous graph to model inter-aspect relationships and aspect-context relationships simultaneously and propose a novel Composition-based Heterogeneous Graph Multi-channel Attention Network (CHGMAN) to encode the constructed heterogeneous graph. Meanwhile, we conduct extensive experiments on three datasets: MAMSATSA, Rest14, and Laptop14, experimental results show the effectiveness of our method.