2024
pdf
bib
abs
PokeMQA: Programmable knowledge editing for Multi-hop Question Answering
Hengrui Gu
|
Kaixiong Zhou
|
Xiaotian Han
|
Ninghao Liu
|
Ruobing Wang
|
Xin Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multi-hop question answering (MQA) is one of the challenging tasks to evaluate machine’s comprehension and reasoning abilities, where large language models (LLMs) have widely achieved the human-comparable performance. Due to the dynamics of knowledge facts in real world, knowledge editing has been explored to update model with the up-to-date facts while avoiding expensive re-training or fine-tuning. Starting from the edited fact, the updated model needs to provide cascading changes in the chain of MQA. The previous art simply adopts a mix-up prompt to instruct LLMs conducting multiple reasoning tasks sequentially, including question decomposition, answer generation, and conflict checking via comparing with edited facts. However, the coupling of these functionally-diverse reasoning tasks inhibits LLMs’ advantages in comprehending and answering questions while disturbing them with the unskilled task of conflict checking. We thus propose a framework, Programmable knowledge editing for Multi-hop Question Answering (PokeMQA), to decouple the jobs. Specifically, we prompt LLMs to decompose knowledge-augmented multi-hop question, while interacting with a detached trainable scope detector to modulate LLMs behavior depending on external conflict signal. The experiments on three LLM backbones and two benchmark datasets validate our superiority in knowledge editing of MQA, outperforming all competitors by a large margin in almost all settings and consistently producing reliable reasoning process.
pdf
bib
abs
InfiMM: Advancing Multimodal Understanding with an Open-Sourced Visual Language Model
Haogeng Liu
|
Quanzeng You
|
Yiqi Wang
|
Xiaotian Han
|
Bohan Zhai
|
Yongfei Liu
|
Wentao Chen
|
Yiren Jian
|
Yunzhe Tao
|
Jianbo Yuan
|
Ran He
|
Hongxia Yang
Findings of the Association for Computational Linguistics: ACL 2024
In this work, we present InfiMM, an advanced Multimodal Large Language Model that adapts to intricate vision-language tasks. InfiMM, inspired by the Flamingo architecture, distinguishes itself through the utilization of large-scale training data, comprehensive training strategies, and diverse large language models. This approach ensures the preservation of Flamingo’s foundational strengths while simultaneously introducing augmented capabilities. Empirical evaluations across a variety of benchmarks underscore InfiMM’s remarkable capability in multimodal understanding. The code can be found at: https://anonymous.4open.science/r/infimm-zephyr-F60C/.
2017
pdf
bib
abs
DMGroup at EmoInt-2017: Emotion Intensity Using Ensemble Method
Song Jiang
|
Xiaotian Han
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
In this paper, we present a novel ensemble learning architecture for emotion intensity analysis, particularly a novel framework of ensemble method. The ensemble method has two stages and each stage includes several single machine learning models. In stage1, we employ both linear and nonlinear regression models to obtain a more diverse emotion intensity representation. In stage2, we use two regression models including linear regression and XGBoost. The result of stage1 serves as the input of stage2, so the two different type models (linear and non-linear) in stage2 can describe the input in two opposite aspects. We also added a method for analyzing and splitting multi-words hashtags and appending them to the emotion intensity corpus before feeding it to our model. Our model achieves 0.571 Pearson-measure for the average of four emotions.